Matches in SemOpenAlex for { <https://semopenalex.org/work/W2622611478> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2622611478 abstract "The max-flow min-cut problem is one of the most explored and studied problems in the area of combinatorial algorithms and optimization. In this paper, we solve the max-flow min-cut problem on large random graphs with log-normal distribution of outdegrees using the distributed Edmonds-Karp algorithm. The algorithm is implemented on a cluster using Spark. We compare the runtime between a single machine implementation and cluster implementation and analyze the impact of communication cost on runtime. In our experiments, we observe that the practical value recorded across various graphs is much lesser than the theoretical estimations primarily due to smaller diameter of the graph. Additionally, we extend this model theoretically on a large urban road network to evaluate the minimum number of sensors required for surveillance of the entire network. To validate the feasibility of this theoretical extension, we tested the model with a large log-normal graph with (sim )1.1 million edges and obtained a max-flow value of 54, which implies that the minimum-cut set of the graph consists of 54 edges. This is a reasonable set of edges to place the sensors compared to the total number of edges. We believe that our approach can enhance the safety of road networks throughout the world." @default.
- W2622611478 created "2017-06-15" @default.
- W2622611478 creator A5001030471 @default.
- W2622611478 creator A5036302094 @default.
- W2622611478 creator A5081072903 @default.
- W2622611478 date "2017-01-01" @default.
- W2622611478 modified "2023-10-06" @default.
- W2622611478 title "Max-flow Min-cut Algorithm in Spark with Application to Road Networks" @default.
- W2622611478 cites W1208784108 @default.
- W2622611478 cites W1984374364 @default.
- W2622611478 cites W2029266474 @default.
- W2622611478 cites W2057112598 @default.
- W2622611478 cites W2090359754 @default.
- W2622611478 cites W2099463627 @default.
- W2622611478 cites W2111708605 @default.
- W2622611478 cites W2114715970 @default.
- W2622611478 cites W2145544674 @default.
- W2622611478 cites W2149342630 @default.
- W2622611478 cites W2152216760 @default.
- W2622611478 cites W2163749925 @default.
- W2622611478 cites W2167927436 @default.
- W2622611478 cites W2170616854 @default.
- W2622611478 cites W2173213060 @default.
- W2622611478 cites W2401802705 @default.
- W2622611478 cites W3007272028 @default.
- W2622611478 cites W4213060883 @default.
- W2622611478 cites W75740688 @default.
- W2622611478 doi "https://doi.org/10.1007/978-3-319-58967-1_2" @default.
- W2622611478 hasPublicationYear "2017" @default.
- W2622611478 type Work @default.
- W2622611478 sameAs 2622611478 @default.
- W2622611478 citedByCount "0" @default.
- W2622611478 crossrefType "book-chapter" @default.
- W2622611478 hasAuthorship W2622611478A5001030471 @default.
- W2622611478 hasAuthorship W2622611478A5036302094 @default.
- W2622611478 hasAuthorship W2622611478A5081072903 @default.
- W2622611478 hasConcept C11413529 @default.
- W2622611478 hasConcept C114809511 @default.
- W2622611478 hasConcept C126255220 @default.
- W2622611478 hasConcept C132525143 @default.
- W2622611478 hasConcept C157469704 @default.
- W2622611478 hasConcept C165526019 @default.
- W2622611478 hasConcept C177264268 @default.
- W2622611478 hasConcept C185690422 @default.
- W2622611478 hasConcept C199360897 @default.
- W2622611478 hasConcept C2781215313 @default.
- W2622611478 hasConcept C33923547 @default.
- W2622611478 hasConcept C41008148 @default.
- W2622611478 hasConcept C80444323 @default.
- W2622611478 hasConceptScore W2622611478C11413529 @default.
- W2622611478 hasConceptScore W2622611478C114809511 @default.
- W2622611478 hasConceptScore W2622611478C126255220 @default.
- W2622611478 hasConceptScore W2622611478C132525143 @default.
- W2622611478 hasConceptScore W2622611478C157469704 @default.
- W2622611478 hasConceptScore W2622611478C165526019 @default.
- W2622611478 hasConceptScore W2622611478C177264268 @default.
- W2622611478 hasConceptScore W2622611478C185690422 @default.
- W2622611478 hasConceptScore W2622611478C199360897 @default.
- W2622611478 hasConceptScore W2622611478C2781215313 @default.
- W2622611478 hasConceptScore W2622611478C33923547 @default.
- W2622611478 hasConceptScore W2622611478C41008148 @default.
- W2622611478 hasConceptScore W2622611478C80444323 @default.
- W2622611478 hasLocation W26226114781 @default.
- W2622611478 hasOpenAccess W2622611478 @default.
- W2622611478 hasPrimaryLocation W26226114781 @default.
- W2622611478 hasRelatedWork W1517950463 @default.
- W2622611478 hasRelatedWork W1582050449 @default.
- W2622611478 hasRelatedWork W1968679690 @default.
- W2622611478 hasRelatedWork W2066074485 @default.
- W2622611478 hasRelatedWork W2100534385 @default.
- W2622611478 hasRelatedWork W2295792932 @default.
- W2622611478 hasRelatedWork W2381207282 @default.
- W2622611478 hasRelatedWork W2535298630 @default.
- W2622611478 hasRelatedWork W2746372354 @default.
- W2622611478 hasRelatedWork W2762357625 @default.
- W2622611478 hasRelatedWork W2802468956 @default.
- W2622611478 hasRelatedWork W2810492404 @default.
- W2622611478 hasRelatedWork W2949909510 @default.
- W2622611478 hasRelatedWork W2951242183 @default.
- W2622611478 hasRelatedWork W2963809597 @default.
- W2622611478 hasRelatedWork W3137352489 @default.
- W2622611478 hasRelatedWork W3195632099 @default.
- W2622611478 hasRelatedWork W58614044 @default.
- W2622611478 hasRelatedWork W3141537459 @default.
- W2622611478 hasRelatedWork W3141688457 @default.
- W2622611478 isParatext "false" @default.
- W2622611478 isRetracted "false" @default.
- W2622611478 magId "2622611478" @default.
- W2622611478 workType "book-chapter" @default.