Matches in SemOpenAlex for { <https://semopenalex.org/work/W2623406985> ?p ?o ?g. }
- W2623406985 endingPage "149" @default.
- W2623406985 startingPage "140" @default.
- W2623406985 abstract "Most time-sequenced ambient air pollution data in China is published through daily Air Quality Index (AQI). However, few studies have used the AQI data to calibrate satellite-based estimates of fine particulate matter (PM2.5, particles no greater than 2.5 μm in aerodynamic diameter) concentrations, partly because the AQI-derived PM2.5 is not continuously obtained each day. Taking Beijing as an example, we developed a geographically and temporally weighted regression (GTWR) model that can account for spatial and temporal variability in the relationship between the non-continuous AQI-derived PM2.5 and satellite-derived aerosol optical depth (AOD). The GTWR model, which uses AOD values with a 3-km spatial resolution obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), meteorological fields, and land-use variables as predictors, was fitted seasonally from April 2013 to March 2015. After being cross-validated against ground observations, the coefficient of determination (R2) of PM2.5 ranged from 0.36 to 0.75, with a mean value of 0.58. The GTWR model outperforms several conventional models, such as the multiple linear regression (MLR) model, geographically weighted regression (GWR) model, temporally weighted regression (TWR) model, and linear mixed-effects (LME) model. Compared to a previous spatiotemporal model, the two-stage (LME + GWR) model, the GTWR model may be more feasible. When the number of daily records is ≥ 5, there is no obvious difference in prediction accuracy (cross-validated R2 both valued at 0.68). However, when the number of daily records is < 5, the GTWR model performs much better (cross-validated R2 of 0.45 and 0.08). Our estimates indicate that the gridded annual mean PM2.5 values range from 62 to 110 μg/m3, denoting strong spatial variation. We find that when available, continuous daily PM2.5 observations can significantly improve model performance and therefore facilitate the estimation of surface PM2.5 concentrations at urban scales. The GTWR model may serve as a reference for studying regions where continuous air pollution data are limited." @default.
- W2623406985 created "2017-06-15" @default.
- W2623406985 creator A5017534219 @default.
- W2623406985 creator A5022625306 @default.
- W2623406985 creator A5028911353 @default.
- W2623406985 creator A5044180884 @default.
- W2623406985 date "2017-09-01" @default.
- W2623406985 modified "2023-10-06" @default.
- W2623406985 title "Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model" @default.
- W2623406985 cites W1173523477 @default.
- W2623406985 cites W1599651906 @default.
- W2623406985 cites W1829241487 @default.
- W2623406985 cites W1970486901 @default.
- W2623406985 cites W1971794754 @default.
- W2623406985 cites W1972334592 @default.
- W2623406985 cites W1974279982 @default.
- W2623406985 cites W1976991085 @default.
- W2623406985 cites W1987337512 @default.
- W2623406985 cites W1990797640 @default.
- W2623406985 cites W1995228070 @default.
- W2623406985 cites W1997159874 @default.
- W2623406985 cites W2008103634 @default.
- W2623406985 cites W2011740524 @default.
- W2623406985 cites W2012394874 @default.
- W2623406985 cites W2013519992 @default.
- W2623406985 cites W2027409234 @default.
- W2623406985 cites W2031528200 @default.
- W2623406985 cites W2044952036 @default.
- W2623406985 cites W2048697203 @default.
- W2623406985 cites W2048723200 @default.
- W2623406985 cites W2053581743 @default.
- W2623406985 cites W2054806977 @default.
- W2623406985 cites W2066281540 @default.
- W2623406985 cites W2069389213 @default.
- W2623406985 cites W2069977802 @default.
- W2623406985 cites W2070491377 @default.
- W2623406985 cites W2070861023 @default.
- W2623406985 cites W2071694204 @default.
- W2623406985 cites W2081990052 @default.
- W2623406985 cites W2083944525 @default.
- W2623406985 cites W2085260550 @default.
- W2623406985 cites W2090436332 @default.
- W2623406985 cites W2094642226 @default.
- W2623406985 cites W2102799873 @default.
- W2623406985 cites W2103977502 @default.
- W2623406985 cites W2108079253 @default.
- W2623406985 cites W2108162680 @default.
- W2623406985 cites W2110673467 @default.
- W2623406985 cites W2119362352 @default.
- W2623406985 cites W2136811230 @default.
- W2623406985 cites W2158101704 @default.
- W2623406985 cites W2161669929 @default.
- W2623406985 cites W2166604768 @default.
- W2623406985 cites W2167549439 @default.
- W2623406985 cites W2233873426 @default.
- W2623406985 cites W2312602772 @default.
- W2623406985 cites W2316167246 @default.
- W2623406985 cites W2316257305 @default.
- W2623406985 cites W2325187418 @default.
- W2623406985 doi "https://doi.org/10.1016/j.rse.2017.06.001" @default.
- W2623406985 hasPublicationYear "2017" @default.
- W2623406985 type Work @default.
- W2623406985 sameAs 2623406985 @default.
- W2623406985 citedByCount "153" @default.
- W2623406985 countsByYear W26234069852017 @default.
- W2623406985 countsByYear W26234069852018 @default.
- W2623406985 countsByYear W26234069852019 @default.
- W2623406985 countsByYear W26234069852020 @default.
- W2623406985 countsByYear W26234069852021 @default.
- W2623406985 countsByYear W26234069852022 @default.
- W2623406985 countsByYear W26234069852023 @default.
- W2623406985 crossrefType "journal-article" @default.
- W2623406985 hasAuthorship W2623406985A5017534219 @default.
- W2623406985 hasAuthorship W2623406985A5022625306 @default.
- W2623406985 hasAuthorship W2623406985A5028911353 @default.
- W2623406985 hasAuthorship W2623406985A5044180884 @default.
- W2623406985 hasConcept C105795698 @default.
- W2623406985 hasConcept C108597893 @default.
- W2623406985 hasConcept C120665830 @default.
- W2623406985 hasConcept C121332964 @default.
- W2623406985 hasConcept C126314574 @default.
- W2623406985 hasConcept C127413603 @default.
- W2623406985 hasConcept C130066347 @default.
- W2623406985 hasConcept C146978453 @default.
- W2623406985 hasConcept C152877465 @default.
- W2623406985 hasConcept C153294291 @default.
- W2623406985 hasConcept C166957645 @default.
- W2623406985 hasConcept C18903297 @default.
- W2623406985 hasConcept C191935318 @default.
- W2623406985 hasConcept C19269812 @default.
- W2623406985 hasConcept C205649164 @default.
- W2623406985 hasConcept C24245907 @default.
- W2623406985 hasConcept C2777007095 @default.
- W2623406985 hasConcept C2778304055 @default.
- W2623406985 hasConcept C33923547 @default.
- W2623406985 hasConcept C39432304 @default.
- W2623406985 hasConcept C48921125 @default.
- W2623406985 hasConcept C62649853 @default.