Matches in SemOpenAlex for { <https://semopenalex.org/work/W2623721002> ?p ?o ?g. }
- W2623721002 abstract "This thesis focuses on applying machine-learning algorithms on water depth inversion from remote sensing images, with a case study in Michigan lake area. The goal is to assess the use of the public available Landsat images on shallow water depth inversion. Firstly, ICESAT elevation data were used to determine the absolute water surface elevation. Airborne bathymetry Lidar data provide systematic measure of water bottom elevation. Subtracting water bottom elevation from water surface elevation will result in water depth. Water depth is associated with reflectance recorded as DN value in Landsat images. Water depth inversion was tested on ANN models, SVM models with four different kernel functions and regression tree model that exploit the correlation between water depth and image band ratios. The result showed that the RMSE (root-mean-square error) of all models are smaller than 1.5 meters and the R2 of them are greater than 0.81. The conclusion is Landsat images can be used to measure water depth in shallow area of the lakes. Potentially, water volume change of the Great Lakes can be monitored by using the procedure explored in this research." @default.
- W2623721002 created "2017-06-15" @default.
- W2623721002 creator A5079486417 @default.
- W2623721002 date "2022-06-16" @default.
- W2623721002 modified "2023-09-29" @default.
- W2623721002 title "Shallow Water Depth Inversion Based on Data Mining Models" @default.
- W2623721002 cites W1549903317 @default.
- W2623721002 cites W1565377632 @default.
- W2623721002 cites W1588470797 @default.
- W2623721002 cites W1974262066 @default.
- W2623721002 cites W1980779042 @default.
- W2623721002 cites W1983385967 @default.
- W2623721002 cites W1995869471 @default.
- W2623721002 cites W1998902551 @default.
- W2623721002 cites W2005920665 @default.
- W2623721002 cites W2014123121 @default.
- W2623721002 cites W2020105647 @default.
- W2623721002 cites W2023709196 @default.
- W2623721002 cites W2023899670 @default.
- W2623721002 cites W2028573940 @default.
- W2623721002 cites W2050778847 @default.
- W2623721002 cites W2054597449 @default.
- W2623721002 cites W2061086178 @default.
- W2623721002 cites W2065166075 @default.
- W2623721002 cites W2069928699 @default.
- W2623721002 cites W2075800659 @default.
- W2623721002 cites W2082622027 @default.
- W2623721002 cites W2088392995 @default.
- W2623721002 cites W2105012295 @default.
- W2623721002 cites W2107301689 @default.
- W2623721002 cites W2116294546 @default.
- W2623721002 cites W2133404858 @default.
- W2623721002 cites W2134474673 @default.
- W2623721002 cites W2152686492 @default.
- W2623721002 cites W2160116837 @default.
- W2623721002 cites W2169887959 @default.
- W2623721002 cites W2324316387 @default.
- W2623721002 cites W2502406910 @default.
- W2623721002 cites W3085162807 @default.
- W2623721002 cites W617729288 @default.
- W2623721002 doi "https://doi.org/10.31390/gradschool_theses.220" @default.
- W2623721002 hasPublicationYear "2022" @default.
- W2623721002 type Work @default.
- W2623721002 sameAs 2623721002 @default.
- W2623721002 citedByCount "0" @default.
- W2623721002 crossrefType "dissertation" @default.
- W2623721002 hasAuthorship W2623721002A5079486417 @default.
- W2623721002 hasBestOaLocation W26237210021 @default.
- W2623721002 hasConcept C105795698 @default.
- W2623721002 hasConcept C109007969 @default.
- W2623721002 hasConcept C111368507 @default.
- W2623721002 hasConcept C114793014 @default.
- W2623721002 hasConcept C127313418 @default.
- W2623721002 hasConcept C1284942 @default.
- W2623721002 hasConcept C139945424 @default.
- W2623721002 hasConcept C174943157 @default.
- W2623721002 hasConcept C186348155 @default.
- W2623721002 hasConcept C187320778 @default.
- W2623721002 hasConcept C1893757 @default.
- W2623721002 hasConcept C205649164 @default.
- W2623721002 hasConcept C2524010 @default.
- W2623721002 hasConcept C33923547 @default.
- W2623721002 hasConcept C37054046 @default.
- W2623721002 hasConcept C58640448 @default.
- W2623721002 hasConcept C62649853 @default.
- W2623721002 hasConcept C76886044 @default.
- W2623721002 hasConceptScore W2623721002C105795698 @default.
- W2623721002 hasConceptScore W2623721002C109007969 @default.
- W2623721002 hasConceptScore W2623721002C111368507 @default.
- W2623721002 hasConceptScore W2623721002C114793014 @default.
- W2623721002 hasConceptScore W2623721002C127313418 @default.
- W2623721002 hasConceptScore W2623721002C1284942 @default.
- W2623721002 hasConceptScore W2623721002C139945424 @default.
- W2623721002 hasConceptScore W2623721002C174943157 @default.
- W2623721002 hasConceptScore W2623721002C186348155 @default.
- W2623721002 hasConceptScore W2623721002C187320778 @default.
- W2623721002 hasConceptScore W2623721002C1893757 @default.
- W2623721002 hasConceptScore W2623721002C205649164 @default.
- W2623721002 hasConceptScore W2623721002C2524010 @default.
- W2623721002 hasConceptScore W2623721002C33923547 @default.
- W2623721002 hasConceptScore W2623721002C37054046 @default.
- W2623721002 hasConceptScore W2623721002C58640448 @default.
- W2623721002 hasConceptScore W2623721002C62649853 @default.
- W2623721002 hasConceptScore W2623721002C76886044 @default.
- W2623721002 hasLocation W26237210021 @default.
- W2623721002 hasOpenAccess W2623721002 @default.
- W2623721002 hasPrimaryLocation W26237210021 @default.
- W2623721002 hasRelatedWork W2051378586 @default.
- W2623721002 hasRelatedWork W2065481556 @default.
- W2623721002 hasRelatedWork W2300467170 @default.
- W2623721002 hasRelatedWork W2392530880 @default.
- W2623721002 hasRelatedWork W2791528159 @default.
- W2623721002 hasRelatedWork W2964723604 @default.
- W2623721002 hasRelatedWork W3004801805 @default.
- W2623721002 hasRelatedWork W3049306714 @default.
- W2623721002 hasRelatedWork W4322503152 @default.
- W2623721002 hasRelatedWork W89868114 @default.
- W2623721002 isParatext "false" @default.
- W2623721002 isRetracted "false" @default.
- W2623721002 magId "2623721002" @default.