Matches in SemOpenAlex for { <https://semopenalex.org/work/W2623898022> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2623898022 endingPage "14" @default.
- W2623898022 startingPage "5" @default.
- W2623898022 abstract "An important analysis performed on microarray gene-expression data is to discover biclusters, which denote groups of genes that are coherently expressed for a subset of conditions. Various biclustering algorithms have been proposed to find different types of biclusters from these real-valued gene-expression data sets. However, these algorithms suffer from several limitations such as inability to explicitly handle errors/noise in the data; difficulty in discovering small bicliusters due to their top-down approach; inability of some of the approaches to find overlapping biclusters, which is crucial as many genes participate in multiple biological processes. Association pattern mining also produce biclusters as their result and can naturally address some of these limitations. However, traditional association mining only finds exact biclusters, which limits its applicability in real-life data sets where the biclusters may be fragmented due to random noise/errors. Moreover, as they only work with binary or boolean attributes, their application on gene-expression data require transforming real-valued attributes to binary attributes, which often results in loss of information. Many past approaches have tried to address the issue of noise and handling real-valued attributes independently but there is no systematic approach that addresses both of these issues together. In this paper, we first propose a novel error-tolerant biclustering model, ‘ET-bicluster’, and then propose a bottom-up heuristic-based mining algorithm to sequentially discover error-tolerant biclusters directly from real-valued gene-expression data. The efficacy of our proposed approach is illustrated by comparing it with a recent approach RAP in the context of two biological problems: discovery of functional modules and discovery of biomarkers. For the first problem, two real-valued S.Cerevisiae microarray gene-expression data sets are used to demonstrate that the biclusters obtained from ET-bicluster approach not only recover larger set of genes as compared to those obtained from RAP approach but also have higher functional coherence as evaluated using the GO-based functional enrichment analysis. The statistical significance of the discovered error-tolerant biclusters as estimated by using two randomization tests, reveal that they are indeed biologically meaningful and statistically significant. For the second problem of biomarker discovery, we used four real-valued Breast Cancer microarray gene-expression data sets and evaluate the biomarkers obtained using MSigDB gene sets. The results obtained for both the problems: functional module discovery and biomarkers discovery, clearly signifies the usefulness of the proposed ET-bicluster approach and illustrate the importance of explicitly incorporating noise/errors in discovering coherent groups of genes from gene-expression data." @default.
- W2623898022 created "2017-06-15" @default.
- W2623898022 creator A5022878003 @default.
- W2623898022 creator A5050919745 @default.
- W2623898022 creator A5053349247 @default.
- W2623898022 date "2010-01-01" @default.
- W2623898022 modified "2023-09-23" @default.
- W2623898022 title "Discovery of error-tolerant biclusters from noisy gene expression data" @default.
- W2623898022 hasPublicationYear "2010" @default.
- W2623898022 type Work @default.
- W2623898022 sameAs 2623898022 @default.
- W2623898022 citedByCount "0" @default.
- W2623898022 crossrefType "proceedings-article" @default.
- W2623898022 hasAuthorship W2623898022A5022878003 @default.
- W2623898022 hasAuthorship W2623898022A5050919745 @default.
- W2623898022 hasAuthorship W2623898022A5053349247 @default.
- W2623898022 hasConcept C115961682 @default.
- W2623898022 hasConcept C119857082 @default.
- W2623898022 hasConcept C124101348 @default.
- W2623898022 hasConcept C144817290 @default.
- W2623898022 hasConcept C154945302 @default.
- W2623898022 hasConcept C173801870 @default.
- W2623898022 hasConcept C193524817 @default.
- W2623898022 hasConcept C199360897 @default.
- W2623898022 hasConcept C33704608 @default.
- W2623898022 hasConcept C33923547 @default.
- W2623898022 hasConcept C41008148 @default.
- W2623898022 hasConcept C48372109 @default.
- W2623898022 hasConcept C73555534 @default.
- W2623898022 hasConcept C90559484 @default.
- W2623898022 hasConcept C94375191 @default.
- W2623898022 hasConcept C94641424 @default.
- W2623898022 hasConcept C99498987 @default.
- W2623898022 hasConceptScore W2623898022C115961682 @default.
- W2623898022 hasConceptScore W2623898022C119857082 @default.
- W2623898022 hasConceptScore W2623898022C124101348 @default.
- W2623898022 hasConceptScore W2623898022C144817290 @default.
- W2623898022 hasConceptScore W2623898022C154945302 @default.
- W2623898022 hasConceptScore W2623898022C173801870 @default.
- W2623898022 hasConceptScore W2623898022C193524817 @default.
- W2623898022 hasConceptScore W2623898022C199360897 @default.
- W2623898022 hasConceptScore W2623898022C33704608 @default.
- W2623898022 hasConceptScore W2623898022C33923547 @default.
- W2623898022 hasConceptScore W2623898022C41008148 @default.
- W2623898022 hasConceptScore W2623898022C48372109 @default.
- W2623898022 hasConceptScore W2623898022C73555534 @default.
- W2623898022 hasConceptScore W2623898022C90559484 @default.
- W2623898022 hasConceptScore W2623898022C94375191 @default.
- W2623898022 hasConceptScore W2623898022C94641424 @default.
- W2623898022 hasConceptScore W2623898022C99498987 @default.
- W2623898022 hasOpenAccess W2623898022 @default.
- W2623898022 hasRelatedWork W1608503058 @default.
- W2623898022 hasRelatedWork W1756950892 @default.
- W2623898022 hasRelatedWork W1965890281 @default.
- W2623898022 hasRelatedWork W1976186990 @default.
- W2623898022 hasRelatedWork W1994448767 @default.
- W2623898022 hasRelatedWork W2015612155 @default.
- W2623898022 hasRelatedWork W2021993511 @default.
- W2623898022 hasRelatedWork W2100038249 @default.
- W2623898022 hasRelatedWork W2108480506 @default.
- W2623898022 hasRelatedWork W2131523319 @default.
- W2623898022 hasRelatedWork W2131683922 @default.
- W2623898022 hasRelatedWork W2144571229 @default.
- W2623898022 hasRelatedWork W2169387435 @default.
- W2623898022 hasRelatedWork W2186738116 @default.
- W2623898022 hasRelatedWork W2188922954 @default.
- W2623898022 hasRelatedWork W2273593963 @default.
- W2623898022 hasRelatedWork W2399507592 @default.
- W2623898022 hasRelatedWork W2792453425 @default.
- W2623898022 hasRelatedWork W2936252131 @default.
- W2623898022 hasRelatedWork W2464069471 @default.
- W2623898022 isParatext "false" @default.
- W2623898022 isRetracted "false" @default.
- W2623898022 magId "2623898022" @default.
- W2623898022 workType "article" @default.