Matches in SemOpenAlex for { <https://semopenalex.org/work/W2624121002> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2624121002 abstract "Word alignment is a basic task in natural language processing and it usually serves as the starting point when building a modern statistical machine translation system. However, the state-of-art parallel algorithm for word alignment is still time-consuming. In this work, we explore a parallel implementation of word alignment algorithm on Graphics Processor Unit (GPU), which has been widely available in the field of high performance computing. We use the Compute Unified Device Architecture (CUDA) programming model to re-implement a state-of-the-art word alignment algorithm, called IBM Expectation-Maximization (EM) algorithm. A Tesla K40M card with 2880 cores is used for experiments and execution times obtained with the proposed algorithm are compared with a sequential algorithm and a multi-threads algorithm on an IBM X3850 server, which has two Intel Xeon E7 CPUs (2.0GHz * 10 cores). The best experimental results show a 16.8-fold speedup compared to the multi-threads algorithm and a 234.7-fold speedup compared to the sequential algorithm." @default.
- W2624121002 created "2017-06-15" @default.
- W2624121002 creator A5012824535 @default.
- W2624121002 creator A5043790437 @default.
- W2624121002 creator A5057783278 @default.
- W2624121002 creator A5066166781 @default.
- W2624121002 creator A5066358713 @default.
- W2624121002 date "2016-12-01" @default.
- W2624121002 modified "2023-09-27" @default.
- W2624121002 title "CUDA-Based Parallel Implementation of IBM Word Alignment Algorithm for Statistical Machine Translation" @default.
- W2624121002 cites W1667652561 @default.
- W2624121002 cites W1973923101 @default.
- W2624121002 cites W1992851788 @default.
- W2624121002 cites W2006969979 @default.
- W2624121002 cites W2038698865 @default.
- W2624121002 cites W2078234404 @default.
- W2624121002 cites W2079300791 @default.
- W2624121002 cites W2080373976 @default.
- W2624121002 cites W2113104171 @default.
- W2624121002 cites W2118558147 @default.
- W2624121002 cites W2155503253 @default.
- W2624121002 cites W2170847085 @default.
- W2624121002 cites W2250765246 @default.
- W2624121002 doi "https://doi.org/10.1109/pdcat.2016.050" @default.
- W2624121002 hasPublicationYear "2016" @default.
- W2624121002 type Work @default.
- W2624121002 sameAs 2624121002 @default.
- W2624121002 citedByCount "1" @default.
- W2624121002 countsByYear W26241210022018 @default.
- W2624121002 crossrefType "proceedings-article" @default.
- W2624121002 hasAuthorship W2624121002A5012824535 @default.
- W2624121002 hasAuthorship W2624121002A5043790437 @default.
- W2624121002 hasAuthorship W2624121002A5057783278 @default.
- W2624121002 hasAuthorship W2624121002A5066166781 @default.
- W2624121002 hasAuthorship W2624121002A5066358713 @default.
- W2624121002 hasConcept C11413529 @default.
- W2624121002 hasConcept C120373497 @default.
- W2624121002 hasConcept C138885662 @default.
- W2624121002 hasConcept C145108525 @default.
- W2624121002 hasConcept C154945302 @default.
- W2624121002 hasConcept C171250308 @default.
- W2624121002 hasConcept C173608175 @default.
- W2624121002 hasConcept C192562407 @default.
- W2624121002 hasConcept C203005215 @default.
- W2624121002 hasConcept C2778119891 @default.
- W2624121002 hasConcept C2779851693 @default.
- W2624121002 hasConcept C41008148 @default.
- W2624121002 hasConcept C41895202 @default.
- W2624121002 hasConcept C68339613 @default.
- W2624121002 hasConcept C70388272 @default.
- W2624121002 hasConcept C90805587 @default.
- W2624121002 hasConceptScore W2624121002C11413529 @default.
- W2624121002 hasConceptScore W2624121002C120373497 @default.
- W2624121002 hasConceptScore W2624121002C138885662 @default.
- W2624121002 hasConceptScore W2624121002C145108525 @default.
- W2624121002 hasConceptScore W2624121002C154945302 @default.
- W2624121002 hasConceptScore W2624121002C171250308 @default.
- W2624121002 hasConceptScore W2624121002C173608175 @default.
- W2624121002 hasConceptScore W2624121002C192562407 @default.
- W2624121002 hasConceptScore W2624121002C203005215 @default.
- W2624121002 hasConceptScore W2624121002C2778119891 @default.
- W2624121002 hasConceptScore W2624121002C2779851693 @default.
- W2624121002 hasConceptScore W2624121002C41008148 @default.
- W2624121002 hasConceptScore W2624121002C41895202 @default.
- W2624121002 hasConceptScore W2624121002C68339613 @default.
- W2624121002 hasConceptScore W2624121002C70388272 @default.
- W2624121002 hasConceptScore W2624121002C90805587 @default.
- W2624121002 hasLocation W26241210021 @default.
- W2624121002 hasOpenAccess W2624121002 @default.
- W2624121002 hasPrimaryLocation W26241210021 @default.
- W2624121002 hasRelatedWork W1504250522 @default.
- W2624121002 hasRelatedWork W1949159625 @default.
- W2624121002 hasRelatedWork W1991456641 @default.
- W2624121002 hasRelatedWork W2008060498 @default.
- W2624121002 hasRelatedWork W2008312915 @default.
- W2624121002 hasRelatedWork W2011218124 @default.
- W2624121002 hasRelatedWork W2017639035 @default.
- W2624121002 hasRelatedWork W2032508741 @default.
- W2624121002 hasRelatedWork W2044629520 @default.
- W2624121002 hasRelatedWork W2107024533 @default.
- W2624121002 hasRelatedWork W2162760245 @default.
- W2624121002 hasRelatedWork W2363203034 @default.
- W2624121002 hasRelatedWork W2364870837 @default.
- W2624121002 hasRelatedWork W2367402182 @default.
- W2624121002 hasRelatedWork W2377437448 @default.
- W2624121002 hasRelatedWork W2605274051 @default.
- W2624121002 hasRelatedWork W2808073125 @default.
- W2624121002 hasRelatedWork W2900537928 @default.
- W2624121002 hasRelatedWork W3008144617 @default.
- W2624121002 hasRelatedWork W2154665409 @default.
- W2624121002 isParatext "false" @default.
- W2624121002 isRetracted "false" @default.
- W2624121002 magId "2624121002" @default.
- W2624121002 workType "article" @default.