Matches in SemOpenAlex for { <https://semopenalex.org/work/W2624297319> ?p ?o ?g. }
- W2624297319 abstract "Dense kernel matrices $Theta in mathbb{R}^{N times N}$ obtained from point evaluations of a covariance function $G$ at locations ${ x_{i} }_{1 leq i leq N} subset mathbb{R}^{d}$ arise in statistics, machine learning, and numerical analysis. For covariance functions that are Green's functions of elliptic boundary value problems and homogeneously-distributed sampling points, we show how to identify a subset $S subset { 1 , dots , N }^2$, with $# S = O ( N log (N) log^{d} ( N /epsilon ) )$, such that the zero fill-in incomplete Cholesky factorisation of the sparse matrix $Theta_{ij} 1_{( i, j ) in S}$ is an $epsilon$-approximation of $Theta$. This factorisation can provably be obtained in complexity $O ( N log( N ) log^{d}( N /epsilon) )$ in space and $O ( N log^{2}( N ) log^{2d}( N /epsilon) )$ in time, improving upon the state of the art for general elliptic operators; we further present numerical evidence that $d$ can be taken to be the intrinsic dimension of the data set rather than that of the ambient space. The algorithm only needs to know the spatial configuration of the $x_{i}$ and does not require an analytic representation of $G$. Furthermore, this factorization straightforwardly provides an approximate sparse PCA with optimal rate of convergence in the operator norm. Hence, by using only subsampling and the incomplete Cholesky factorization, we obtain, at nearly linear complexity, the compression, inversion and approximate PCA of a large class of covariance matrices. By inverting the order of the Cholesky factorization we also obtain a solver for elliptic PDE with complexity $O ( N log^{d}( N /epsilon) )$ in space and $O ( N log^{2d}( N /epsilon) )$ in time, improving upon the state of the art for general elliptic operators." @default.
- W2624297319 created "2017-06-15" @default.
- W2624297319 creator A5034000581 @default.
- W2624297319 creator A5059714266 @default.
- W2624297319 creator A5063265366 @default.
- W2624297319 date "2017-06-07" @default.
- W2624297319 modified "2023-09-27" @default.
- W2624297319 title "Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity" @default.
- W2624297319 cites W1488435683 @default.
- W2624297319 cites W1500538803 @default.
- W2624297319 cites W1543241987 @default.
- W2624297319 cites W1571870753 @default.
- W2624297319 cites W1584657480 @default.
- W2624297319 cites W1589783193 @default.
- W2624297319 cites W1746819321 @default.
- W2624297319 cites W1794957547 @default.
- W2624297319 cites W1837874438 @default.
- W2624297319 cites W1879327530 @default.
- W2624297319 cites W1942047793 @default.
- W2624297319 cites W1973786815 @default.
- W2624297319 cites W1976986637 @default.
- W2624297319 cites W1980404981 @default.
- W2624297319 cites W1989911287 @default.
- W2624297319 cites W1992208469 @default.
- W2624297319 cites W1992513401 @default.
- W2624297319 cites W1996007769 @default.
- W2624297319 cites W1996160600 @default.
- W2624297319 cites W1998388190 @default.
- W2624297319 cites W2004807582 @default.
- W2624297319 cites W2025695688 @default.
- W2624297319 cites W2037870010 @default.
- W2624297319 cites W2038535655 @default.
- W2624297319 cites W2054495283 @default.
- W2624297319 cites W2061320421 @default.
- W2624297319 cites W2079321251 @default.
- W2624297319 cites W2083206954 @default.
- W2624297319 cites W2089958289 @default.
- W2624297319 cites W2090129250 @default.
- W2624297319 cites W2094585768 @default.
- W2624297319 cites W2096559782 @default.
- W2624297319 cites W2098841537 @default.
- W2624297319 cites W2099768828 @default.
- W2624297319 cites W2101501830 @default.
- W2624297319 cites W2108966602 @default.
- W2624297319 cites W2112545207 @default.
- W2624297319 cites W2113679823 @default.
- W2624297319 cites W2116810533 @default.
- W2624297319 cites W2123687908 @default.
- W2624297319 cites W2124101779 @default.
- W2624297319 cites W2127981460 @default.
- W2624297319 cites W2134026641 @default.
- W2624297319 cites W2137541800 @default.
- W2624297319 cites W2137557016 @default.
- W2624297319 cites W2156164638 @default.
- W2624297319 cites W2296319761 @default.
- W2624297319 cites W2323750980 @default.
- W2624297319 cites W2330972991 @default.
- W2624297319 cites W2513676926 @default.
- W2624297319 cites W2572784842 @default.
- W2624297319 cites W2583383801 @default.
- W2624297319 cites W2604140356 @default.
- W2624297319 cites W2607802485 @default.
- W2624297319 cites W2962849402 @default.
- W2624297319 cites W2962868312 @default.
- W2624297319 cites W2963199582 @default.
- W2624297319 cites W2963634130 @default.
- W2624297319 cites W2963863488 @default.
- W2624297319 cites W2964178657 @default.
- W2624297319 cites W2964350355 @default.
- W2624297319 cites W3098382412 @default.
- W2624297319 cites W48298361 @default.
- W2624297319 cites W581475362 @default.
- W2624297319 hasPublicationYear "2017" @default.
- W2624297319 type Work @default.
- W2624297319 sameAs 2624297319 @default.
- W2624297319 citedByCount "10" @default.
- W2624297319 countsByYear W26242973192018 @default.
- W2624297319 countsByYear W26242973192019 @default.
- W2624297319 countsByYear W26242973192020 @default.
- W2624297319 countsByYear W26242973192021 @default.
- W2624297319 crossrefType "posted-content" @default.
- W2624297319 hasAuthorship W2624297319A5034000581 @default.
- W2624297319 hasAuthorship W2624297319A5059714266 @default.
- W2624297319 hasAuthorship W2624297319A5063265366 @default.
- W2624297319 hasConcept C105795698 @default.
- W2624297319 hasConcept C11413529 @default.
- W2624297319 hasConcept C114614502 @default.
- W2624297319 hasConcept C118615104 @default.
- W2624297319 hasConcept C121332964 @default.
- W2624297319 hasConcept C158693339 @default.
- W2624297319 hasConcept C178650346 @default.
- W2624297319 hasConcept C187834632 @default.
- W2624297319 hasConcept C33923547 @default.
- W2624297319 hasConcept C34727166 @default.
- W2624297319 hasConcept C44363057 @default.
- W2624297319 hasConcept C46085209 @default.
- W2624297319 hasConcept C62520636 @default.
- W2624297319 hasConcept C63553672 @default.
- W2624297319 hasConcept C74193536 @default.
- W2624297319 hasConceptScore W2624297319C105795698 @default.