Matches in SemOpenAlex for { <https://semopenalex.org/work/W2624886053> ?p ?o ?g. }
- W2624886053 endingPage "171" @default.
- W2624886053 startingPage "151" @default.
- W2624886053 abstract "Existing methods for calibrating link fundamental diagrams (FDs) often focus on a limited number of links and use grouping strategies that are largely dependent on roadway physical attributes alone. In this study, we propose a big data-driven two-stage clustering framework to calibrate link FDs for freeway networks. The first stage captures, under normal traffic state, the variations of link FDs over multiple days based on which links are clustered in the second stage. Two methods, i.e. the standard k-means algorithm combined with hierarchical clustering and a modified hierarchical clustering based on the Fréchet distance, are applied in the first stage to obtain the FD parameter matrix for each link. The calibrated matrices are input into the second stage where the modified hierarchical clustering is re-employed as a static approach resulting in multiple clusters of links. To further consider the variations of link FDs, the static approach is extended by modifying the similarity measure through the principle component analysis (PCA). The resulting multivariate time-series clustering models the distributions of the FD parameters as a dynamic approach. The proposed framework is applied on the Melbourne freeway network using one-year worth of loop detector data. Results have shown that (a) similar roadway physical attributes do not necessarily result in similar link FDs, (b) the connectivity-based approach performs better in clustering link FDs as compared with the centroid-based approach, and (c) the proposed framework helps achieving a better understanding of the spatial distribution of links with similar FDs and the associated variations and distributions of the FD parameters." @default.
- W2624886053 created "2017-06-23" @default.
- W2624886053 creator A5002250184 @default.
- W2624886053 creator A5013479513 @default.
- W2624886053 creator A5021264543 @default.
- W2624886053 creator A5021305174 @default.
- W2624886053 date "2018-09-01" @default.
- W2624886053 modified "2023-10-02" @default.
- W2624886053 title "A big data approach for clustering and calibration of link fundamental diagrams for large-scale network simulation applications" @default.
- W2624886053 cites W1896079673 @default.
- W2624886053 cites W1972547139 @default.
- W2624886053 cites W1976631805 @default.
- W2624886053 cites W1986969158 @default.
- W2624886053 cites W1989473098 @default.
- W2624886053 cites W1997650846 @default.
- W2624886053 cites W2000964830 @default.
- W2624886053 cites W2001789842 @default.
- W2624886053 cites W2013131147 @default.
- W2624886053 cites W2017506082 @default.
- W2624886053 cites W2033833409 @default.
- W2624886053 cites W2041597917 @default.
- W2624886053 cites W2042670297 @default.
- W2624886053 cites W2043687474 @default.
- W2624886053 cites W2057923756 @default.
- W2624886053 cites W2063918674 @default.
- W2624886053 cites W2064064283 @default.
- W2624886053 cites W2079097800 @default.
- W2624886053 cites W2082684242 @default.
- W2624886053 cites W2083956035 @default.
- W2624886053 cites W2084404970 @default.
- W2624886053 cites W2088211485 @default.
- W2624886053 cites W2094806313 @default.
- W2624886053 cites W2097223009 @default.
- W2624886053 cites W2099304584 @default.
- W2624886053 cites W2107306087 @default.
- W2624886053 cites W2109512243 @default.
- W2624886053 cites W2111160151 @default.
- W2624886053 cites W2124299914 @default.
- W2624886053 cites W2125799095 @default.
- W2624886053 cites W2127706386 @default.
- W2624886053 cites W2134028088 @default.
- W2624886053 cites W2150190906 @default.
- W2624886053 cites W2150593711 @default.
- W2624886053 cites W2153685828 @default.
- W2624886053 cites W2167588718 @default.
- W2624886053 cites W2177369458 @default.
- W2624886053 cites W2409967033 @default.
- W2624886053 cites W2563812079 @default.
- W2624886053 cites W2568308068 @default.
- W2624886053 cites W4239785091 @default.
- W2624886053 cites W4242970300 @default.
- W2624886053 cites W4247984232 @default.
- W2624886053 cites W4249282801 @default.
- W2624886053 doi "https://doi.org/10.1016/j.trc.2017.08.012" @default.
- W2624886053 hasPublicationYear "2018" @default.
- W2624886053 type Work @default.
- W2624886053 sameAs 2624886053 @default.
- W2624886053 citedByCount "14" @default.
- W2624886053 countsByYear W26248860532018 @default.
- W2624886053 countsByYear W26248860532019 @default.
- W2624886053 countsByYear W26248860532020 @default.
- W2624886053 countsByYear W26248860532021 @default.
- W2624886053 countsByYear W26248860532022 @default.
- W2624886053 countsByYear W26248860532023 @default.
- W2624886053 crossrefType "journal-article" @default.
- W2624886053 hasAuthorship W2624886053A5002250184 @default.
- W2624886053 hasAuthorship W2624886053A5013479513 @default.
- W2624886053 hasAuthorship W2624886053A5021264543 @default.
- W2624886053 hasAuthorship W2624886053A5021305174 @default.
- W2624886053 hasBestOaLocation W26248860532 @default.
- W2624886053 hasConcept C105795698 @default.
- W2624886053 hasConcept C11413529 @default.
- W2624886053 hasConcept C120665830 @default.
- W2624886053 hasConcept C121332964 @default.
- W2624886053 hasConcept C124101348 @default.
- W2624886053 hasConcept C146599234 @default.
- W2624886053 hasConcept C154945302 @default.
- W2624886053 hasConcept C165838908 @default.
- W2624886053 hasConcept C192209626 @default.
- W2624886053 hasConcept C2778753846 @default.
- W2624886053 hasConcept C2778755073 @default.
- W2624886053 hasConcept C31258907 @default.
- W2624886053 hasConcept C33923547 @default.
- W2624886053 hasConcept C41008148 @default.
- W2624886053 hasConcept C62520636 @default.
- W2624886053 hasConcept C73555534 @default.
- W2624886053 hasConcept C92835128 @default.
- W2624886053 hasConceptScore W2624886053C105795698 @default.
- W2624886053 hasConceptScore W2624886053C11413529 @default.
- W2624886053 hasConceptScore W2624886053C120665830 @default.
- W2624886053 hasConceptScore W2624886053C121332964 @default.
- W2624886053 hasConceptScore W2624886053C124101348 @default.
- W2624886053 hasConceptScore W2624886053C146599234 @default.
- W2624886053 hasConceptScore W2624886053C154945302 @default.
- W2624886053 hasConceptScore W2624886053C165838908 @default.
- W2624886053 hasConceptScore W2624886053C192209626 @default.
- W2624886053 hasConceptScore W2624886053C2778753846 @default.
- W2624886053 hasConceptScore W2624886053C2778755073 @default.