Matches in SemOpenAlex for { <https://semopenalex.org/work/W2624941750> ?p ?o ?g. }
- W2624941750 endingPage "637" @default.
- W2624941750 startingPage "628" @default.
- W2624941750 abstract "Financial time series are commonly modeled with methods assuming data normality. However, the real distribution can be nontrivial, also not having an explicitly formulated probability density function. In this work we introduce novel parameter estimation and high-powered distribution testing methods which do not rely on closed form densities, but use the characteristic functions for comparison. The approach applied to a pair of stock index returns demonstrates that such a bivariate vector can be a sample coming from a bivariate sub-Gaussian distribution. The methods presented here can be applied to any nontrivially distributed financial data, among others." @default.
- W2624941750 created "2017-06-23" @default.
- W2624941750 creator A5046463747 @default.
- W2624941750 creator A5073892482 @default.
- W2624941750 creator A5090807737 @default.
- W2624941750 date "2017-11-01" @default.
- W2624941750 modified "2023-09-30" @default.
- W2624941750 title "Bivariate sub-Gaussian model for stock index returns" @default.
- W2624941750 cites W1533132203 @default.
- W2624941750 cites W1973429805 @default.
- W2624941750 cites W1975463304 @default.
- W2624941750 cites W1990559054 @default.
- W2624941750 cites W2004981962 @default.
- W2624941750 cites W2022692667 @default.
- W2624941750 cites W2033901649 @default.
- W2624941750 cites W2034218126 @default.
- W2624941750 cites W2037619382 @default.
- W2624941750 cites W2045362450 @default.
- W2624941750 cites W2049331392 @default.
- W2624941750 cites W2053879275 @default.
- W2624941750 cites W2057116804 @default.
- W2624941750 cites W2057985979 @default.
- W2624941750 cites W2060164407 @default.
- W2624941750 cites W2062062923 @default.
- W2624941750 cites W2063593194 @default.
- W2624941750 cites W2072449043 @default.
- W2624941750 cites W2082617057 @default.
- W2624941750 cites W2083450612 @default.
- W2624941750 cites W2105166888 @default.
- W2624941750 cites W2128055577 @default.
- W2624941750 cites W2138540172 @default.
- W2624941750 cites W2143249699 @default.
- W2624941750 cites W2155763399 @default.
- W2624941750 cites W2167952654 @default.
- W2624941750 cites W2285024848 @default.
- W2624941750 cites W2325765353 @default.
- W2624941750 cites W2325953669 @default.
- W2624941750 cites W3103075443 @default.
- W2624941750 cites W3122502467 @default.
- W2624941750 cites W3122779470 @default.
- W2624941750 cites W4237060688 @default.
- W2624941750 cites W4251428492 @default.
- W2624941750 doi "https://doi.org/10.1016/j.physa.2017.05.080" @default.
- W2624941750 hasPublicationYear "2017" @default.
- W2624941750 type Work @default.
- W2624941750 sameAs 2624941750 @default.
- W2624941750 citedByCount "7" @default.
- W2624941750 countsByYear W26249417502019 @default.
- W2624941750 countsByYear W26249417502021 @default.
- W2624941750 countsByYear W26249417502022 @default.
- W2624941750 countsByYear W26249417502023 @default.
- W2624941750 crossrefType "journal-article" @default.
- W2624941750 hasAuthorship W2624941750A5046463747 @default.
- W2624941750 hasAuthorship W2624941750A5073892482 @default.
- W2624941750 hasAuthorship W2624941750A5090807737 @default.
- W2624941750 hasConcept C105795698 @default.
- W2624941750 hasConcept C121332964 @default.
- W2624941750 hasConcept C127413603 @default.
- W2624941750 hasConcept C136764020 @default.
- W2624941750 hasConcept C149782125 @default.
- W2624941750 hasConcept C161584116 @default.
- W2624941750 hasConcept C163716315 @default.
- W2624941750 hasConcept C166957645 @default.
- W2624941750 hasConcept C177384507 @default.
- W2624941750 hasConcept C197055811 @default.
- W2624941750 hasConcept C204036174 @default.
- W2624941750 hasConcept C205649164 @default.
- W2624941750 hasConcept C2776157432 @default.
- W2624941750 hasConcept C2777382242 @default.
- W2624941750 hasConcept C2779343474 @default.
- W2624941750 hasConcept C2780299701 @default.
- W2624941750 hasConcept C28826006 @default.
- W2624941750 hasConcept C33923547 @default.
- W2624941750 hasConcept C41008148 @default.
- W2624941750 hasConcept C62520636 @default.
- W2624941750 hasConcept C64341305 @default.
- W2624941750 hasConcept C78519656 @default.
- W2624941750 hasConcept C88389905 @default.
- W2624941750 hasConceptScore W2624941750C105795698 @default.
- W2624941750 hasConceptScore W2624941750C121332964 @default.
- W2624941750 hasConceptScore W2624941750C127413603 @default.
- W2624941750 hasConceptScore W2624941750C136764020 @default.
- W2624941750 hasConceptScore W2624941750C149782125 @default.
- W2624941750 hasConceptScore W2624941750C161584116 @default.
- W2624941750 hasConceptScore W2624941750C163716315 @default.
- W2624941750 hasConceptScore W2624941750C166957645 @default.
- W2624941750 hasConceptScore W2624941750C177384507 @default.
- W2624941750 hasConceptScore W2624941750C197055811 @default.
- W2624941750 hasConceptScore W2624941750C204036174 @default.
- W2624941750 hasConceptScore W2624941750C205649164 @default.
- W2624941750 hasConceptScore W2624941750C2776157432 @default.
- W2624941750 hasConceptScore W2624941750C2777382242 @default.
- W2624941750 hasConceptScore W2624941750C2779343474 @default.
- W2624941750 hasConceptScore W2624941750C2780299701 @default.
- W2624941750 hasConceptScore W2624941750C28826006 @default.
- W2624941750 hasConceptScore W2624941750C33923547 @default.
- W2624941750 hasConceptScore W2624941750C41008148 @default.
- W2624941750 hasConceptScore W2624941750C62520636 @default.