Matches in SemOpenAlex for { <https://semopenalex.org/work/W2625485718> ?p ?o ?g. }
- W2625485718 endingPage "969" @default.
- W2625485718 startingPage "956" @default.
- W2625485718 abstract "Ni/TiO2 nanoparticles dispersed on montmorillonite (MMT) clay with different sizes for selective ethanol steam reforming with regard to hydrogen production has been investigated. Ni/MMT-TiO2 nano-composite catalysts were prepared by a sol-gel assisted impregnation method. The samples were extensively characterized by X-ray diffraction (XRD), N2 adsorption-desorption, Fourier transfer infrared (FTIR) spectroscopy, scanning electron coupled with energy dispersive X-ray (SEM-EDX) spectroscopy and thermogravimetric analysis (TGA). While Ni content progressively promoted the activity of TiO2 toward ethanol conversion and H2 yield, modification with MMT controlled the crystal growth and produced anatase phase of delaminated MMT/TiO2 nanocomposite. Formation of a surface Ni-MMT phase in the modified Ni/MMT-TiO2 nanocomposite catalyst enhanced Ni-dispersion and reducibility. Various parameters concerning the effect of temperature, steam-to-ethanol (S/E) feed ratio, MMT loading and Ni-metal loading on the catalytic performance, were thoroughly studied. The optimal performance was achieved for 12 wt. % Ni/20 wt. % MMT–TiO2, achieving an ethanol conversion of 89% and a H2 yield of up to 55% at 500 °C. In addition, the Ni/MMT-TiO2 nano-composite catalyst possessed the excellent stability at the optimum temperature, over 20 h reaction time. The relative low cost, good activity and stability of MMT modified Ni/TiO2 catalyst offers for an economical and feasible route for production of renewable hydrogen from ethanol." @default.
- W2625485718 created "2017-06-23" @default.
- W2625485718 creator A5003421851 @default.
- W2625485718 creator A5033930341 @default.
- W2625485718 creator A5043773134 @default.
- W2625485718 date "2017-10-01" @default.
- W2625485718 modified "2023-10-18" @default.
- W2625485718 title "MMT-supported Ni/TiO2 nanocomposite for low temperature ethanol steam reforming toward hydrogen production" @default.
- W2625485718 cites W1146112842 @default.
- W2625485718 cites W1473766053 @default.
- W2625485718 cites W1534094137 @default.
- W2625485718 cites W1765929668 @default.
- W2625485718 cites W1876085948 @default.
- W2625485718 cites W188434415 @default.
- W2625485718 cites W1940091449 @default.
- W2625485718 cites W1965647931 @default.
- W2625485718 cites W1966088600 @default.
- W2625485718 cites W1968446208 @default.
- W2625485718 cites W1972641516 @default.
- W2625485718 cites W1973028840 @default.
- W2625485718 cites W1980609230 @default.
- W2625485718 cites W1984319850 @default.
- W2625485718 cites W1988177686 @default.
- W2625485718 cites W1989184526 @default.
- W2625485718 cites W1989632778 @default.
- W2625485718 cites W1990059624 @default.
- W2625485718 cites W1994558972 @default.
- W2625485718 cites W1998140864 @default.
- W2625485718 cites W2000874485 @default.
- W2625485718 cites W2003468886 @default.
- W2625485718 cites W2009902501 @default.
- W2625485718 cites W2012931288 @default.
- W2625485718 cites W2014601612 @default.
- W2625485718 cites W2014887438 @default.
- W2625485718 cites W2025226250 @default.
- W2625485718 cites W2030022194 @default.
- W2625485718 cites W2032379942 @default.
- W2625485718 cites W2033068499 @default.
- W2625485718 cites W2038074039 @default.
- W2625485718 cites W2038363237 @default.
- W2625485718 cites W2042225147 @default.
- W2625485718 cites W2044960717 @default.
- W2625485718 cites W2046992697 @default.
- W2625485718 cites W2048847870 @default.
- W2625485718 cites W2055681221 @default.
- W2625485718 cites W2057079444 @default.
- W2625485718 cites W2057285340 @default.
- W2625485718 cites W2057874886 @default.
- W2625485718 cites W2060369515 @default.
- W2625485718 cites W2064044253 @default.
- W2625485718 cites W2065501594 @default.
- W2625485718 cites W2066208466 @default.
- W2625485718 cites W2069340746 @default.
- W2625485718 cites W2075548860 @default.
- W2625485718 cites W2076976793 @default.
- W2625485718 cites W2082464445 @default.
- W2625485718 cites W2084084886 @default.
- W2625485718 cites W2084634842 @default.
- W2625485718 cites W2085478121 @default.
- W2625485718 cites W2109278784 @default.
- W2625485718 cites W2122336474 @default.
- W2625485718 cites W2133809468 @default.
- W2625485718 cites W2147182795 @default.
- W2625485718 cites W2163160757 @default.
- W2625485718 cites W2187990716 @default.
- W2625485718 cites W2274062568 @default.
- W2625485718 cites W2294003043 @default.
- W2625485718 cites W2302148012 @default.
- W2625485718 cites W2328228239 @default.
- W2625485718 cites W2329062811 @default.
- W2625485718 cites W2334020847 @default.
- W2625485718 cites W2411351312 @default.
- W2625485718 cites W2469690018 @default.
- W2625485718 cites W2551549088 @default.
- W2625485718 cites W2563635901 @default.
- W2625485718 cites W2592240426 @default.
- W2625485718 cites W2606746045 @default.
- W2625485718 cites W945035993 @default.
- W2625485718 doi "https://doi.org/10.1016/j.cej.2017.06.012" @default.
- W2625485718 hasPublicationYear "2017" @default.
- W2625485718 type Work @default.
- W2625485718 sameAs 2625485718 @default.
- W2625485718 citedByCount "82" @default.
- W2625485718 countsByYear W26254857182018 @default.
- W2625485718 countsByYear W26254857182019 @default.
- W2625485718 countsByYear W26254857182020 @default.
- W2625485718 countsByYear W26254857182021 @default.
- W2625485718 countsByYear W26254857182022 @default.
- W2625485718 countsByYear W26254857182023 @default.
- W2625485718 crossrefType "journal-article" @default.
- W2625485718 hasAuthorship W2625485718A5003421851 @default.
- W2625485718 hasAuthorship W2625485718A5033930341 @default.
- W2625485718 hasAuthorship W2625485718A5043773134 @default.
- W2625485718 hasConcept C127413603 @default.
- W2625485718 hasConcept C171250308 @default.
- W2625485718 hasConcept C178790620 @default.
- W2625485718 hasConcept C185592680 @default.
- W2625485718 hasConcept C192562407 @default.