Matches in SemOpenAlex for { <https://semopenalex.org/work/W2625641253> ?p ?o ?g. }
- W2625641253 endingPage "024507" @default.
- W2625641253 startingPage "024507" @default.
- W2625641253 abstract "A method using rough set feature selection and extreme learning machine (ELM) whose learning strategy and hidden node parameters are optimized by self-adaptive differential evolution (SaDE) algorithm for classification of breast masses is investigated. A pathologically proven database of 140 breast ultrasound images, including 80 benign and 60 malignant, is used for this study. A fast nonlocal means algorithm is applied for speckle noise removal, and multiresolution analysis of undecimated discrete wavelet transform is used for accurate segmentation of breast lesions. A total of 34 features, including 29 textural and five morphological, are applied to a [Formula: see text]-fold cross-validation scheme, in which more relevant features are selected by quick-reduct algorithm, and the breast masses are discriminated into benign or malignant using SaDE-ELM classifier. The diagnosis accuracy of the system is assessed using parameters, such as accuracy (Ac), sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), Matthew's correlation coefficient (MCC), and area ([Formula: see text]) under receiver operating characteristics curve. The performance of the proposed system is also compared with other classifiers, such as support vector machine and ELM. The results indicated that the proposed SaDE algorithm has superior performance with [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] compared to other classifiers." @default.
- W2625641253 created "2017-06-23" @default.
- W2625641253 creator A5024647865 @default.
- W2625641253 creator A5029512900 @default.
- W2625641253 creator A5068025121 @default.
- W2625641253 date "2017-06-16" @default.
- W2625641253 modified "2023-09-27" @default.
- W2625641253 title "Classification of breast masses in ultrasound images using self-adaptive differential evolution extreme learning machine and rough set feature selection" @default.
- W2625641253 cites W1490180010 @default.
- W2625641253 cites W1595159159 @default.
- W2625641253 cites W1968918799 @default.
- W2625641253 cites W1970091020 @default.
- W2625641253 cites W1973880112 @default.
- W2625641253 cites W1974859069 @default.
- W2625641253 cites W1983380373 @default.
- W2625641253 cites W1984530193 @default.
- W2625641253 cites W1988819287 @default.
- W2625641253 cites W1989033067 @default.
- W2625641253 cites W1991522840 @default.
- W2625641253 cites W1991829556 @default.
- W2625641253 cites W1992147426 @default.
- W2625641253 cites W2002821148 @default.
- W2625641253 cites W2004320486 @default.
- W2625641253 cites W2009629689 @default.
- W2625641253 cites W2015005243 @default.
- W2625641253 cites W2019060315 @default.
- W2625641253 cites W2019345570 @default.
- W2625641253 cites W2021731869 @default.
- W2625641253 cites W2024783313 @default.
- W2625641253 cites W2026131661 @default.
- W2625641253 cites W2026794295 @default.
- W2625641253 cites W2032309205 @default.
- W2625641253 cites W2034905316 @default.
- W2625641253 cites W2037125973 @default.
- W2625641253 cites W2040604977 @default.
- W2625641253 cites W2045944308 @default.
- W2625641253 cites W2046887523 @default.
- W2625641253 cites W2057055375 @default.
- W2625641253 cites W2061295593 @default.
- W2625641253 cites W2067974329 @default.
- W2625641253 cites W2071302409 @default.
- W2625641253 cites W2076837258 @default.
- W2625641253 cites W2077208101 @default.
- W2625641253 cites W2077637616 @default.
- W2625641253 cites W2084985476 @default.
- W2625641253 cites W2086268663 @default.
- W2625641253 cites W2089137303 @default.
- W2625641253 cites W2096413230 @default.
- W2625641253 cites W2111072639 @default.
- W2625641253 cites W2111896212 @default.
- W2625641253 cites W2112643157 @default.
- W2625641253 cites W2118652164 @default.
- W2625641253 cites W2120580182 @default.
- W2625641253 cites W2129724855 @default.
- W2625641253 cites W2133665775 @default.
- W2625641253 cites W2134603844 @default.
- W2625641253 cites W2136396015 @default.
- W2625641253 cites W2137340504 @default.
- W2625641253 cites W2138268200 @default.
- W2625641253 cites W2139626017 @default.
- W2625641253 cites W2141980501 @default.
- W2625641253 cites W2142592339 @default.
- W2625641253 cites W2144854846 @default.
- W2625641253 cites W2147982258 @default.
- W2625641253 cites W2163287977 @default.
- W2625641253 cites W2163790085 @default.
- W2625641253 cites W2167536222 @default.
- W2625641253 cites W2314081986 @default.
- W2625641253 cites W2328176404 @default.
- W2625641253 cites W2470848406 @default.
- W2625641253 cites W2582469721 @default.
- W2625641253 cites W4248987446 @default.
- W2625641253 cites W4253808625 @default.
- W2625641253 cites W4255833381 @default.
- W2625641253 doi "https://doi.org/10.1117/1.jmi.4.2.024507" @default.
- W2625641253 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5473465" @default.
- W2625641253 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28653015" @default.
- W2625641253 hasPublicationYear "2017" @default.
- W2625641253 type Work @default.
- W2625641253 sameAs 2625641253 @default.
- W2625641253 citedByCount "11" @default.
- W2625641253 countsByYear W26256412532017 @default.
- W2625641253 countsByYear W26256412532018 @default.
- W2625641253 countsByYear W26256412532020 @default.
- W2625641253 countsByYear W26256412532021 @default.
- W2625641253 countsByYear W26256412532022 @default.
- W2625641253 crossrefType "journal-article" @default.
- W2625641253 hasAuthorship W2625641253A5024647865 @default.
- W2625641253 hasAuthorship W2625641253A5029512900 @default.
- W2625641253 hasAuthorship W2625641253A5068025121 @default.
- W2625641253 hasBestOaLocation W26256412532 @default.
- W2625641253 hasConcept C11413529 @default.
- W2625641253 hasConcept C119857082 @default.
- W2625641253 hasConcept C121608353 @default.
- W2625641253 hasConcept C12267149 @default.
- W2625641253 hasConcept C126322002 @default.
- W2625641253 hasConcept C148483581 @default.
- W2625641253 hasConcept C153180895 @default.