Matches in SemOpenAlex for { <https://semopenalex.org/work/W2626156797> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2626156797 abstract "Phase transitions of second order play an important role in solid state physics. It is in their nature that they occur only in systems that are composed from an infinite number of components since, only that way, the necessary conditions for this (for example, scale invariance) are granted. Such a system at a second order phase transition is called critical. The infinite number of particles poses a particular challenge, even for the description of classical systems. Quantum mechanical systems, however, are distinctly more difficult to treat in this context, since the dimension of their state space grows exponentially with the number of their particles, not to mention the fact that only a few – and usually only one-dimensional – quantum systems are exactly solvable. One of these exactly solvable one-dimensional quantum systems is the SU(N) Haldane-Shastry spin chain that may be regarded as the archetype of long-range spin chains. Moreover, it is critical in the continuum limit and its effective low-energy theory is the so-called SU(N)_1 Wess-Zumino-Witten model. It is a quantum field theory which is not only conformally invariant, so, in particular, scale invariant, but, furthermore, exhibits additional symmetry in the shape of an infinite extension of the Lie algebra su(N) associated with SU(N). Recent studies show that, from these very structures of the SU(N)_1 WZW model, one can, in turn, derive spin systems, whose arrangement is not necessarily the one of a spin chain, but even two-dimensional distributions of the spins in the plane are possible. These systems are again characterized by long-range interactions, comparable to those of the Haldane-Shastry spin chain, which is also obtained as a result of an appropriate choice of parameters.In this thesis, we extend the construction already known for the SU(N) case to the supersymmetric case GL(m|n). Here, we construct explicitly both, a special quantum state as well as a Hamiltonian that projects this quantum state to zero. We also discuss the Hamiltonian in the special case of the GL(1|1) spin chain and compare it to the respective GL(1|1) Haldane-Shastry spin chain on a bipartite state space. Both are critical and we identify the corresponding conformal field theories. Subsequently, we describe a generalization of this system in terms of two parameters and explain how its spectrum was found. It is then analyzed and its continuum limit is determined. In doing so, it shows that the system displays criticality only for generic values of one of the two parameters." @default.
- W2626156797 created "2017-06-23" @default.
- W2626156797 creator A5050390200 @default.
- W2626156797 date "2017-04-01" @default.
- W2626156797 modified "2023-09-27" @default.
- W2626156797 title "Quantum Superspin Systems from Conformal Field Theory" @default.
- W2626156797 hasPublicationYear "2017" @default.
- W2626156797 type Work @default.
- W2626156797 sameAs 2626156797 @default.
- W2626156797 citedByCount "0" @default.
- W2626156797 crossrefType "dissertation" @default.
- W2626156797 hasAuthorship W2626156797A5050390200 @default.
- W2626156797 hasConcept C115047598 @default.
- W2626156797 hasConcept C121332964 @default.
- W2626156797 hasConcept C135593079 @default.
- W2626156797 hasConcept C173848574 @default.
- W2626156797 hasConcept C190470478 @default.
- W2626156797 hasConcept C2524010 @default.
- W2626156797 hasConcept C33332235 @default.
- W2626156797 hasConcept C33923547 @default.
- W2626156797 hasConcept C37914503 @default.
- W2626156797 hasConcept C54613284 @default.
- W2626156797 hasConcept C62520636 @default.
- W2626156797 hasConcept C84114770 @default.
- W2626156797 hasConcept C98214594 @default.
- W2626156797 hasConceptScore W2626156797C115047598 @default.
- W2626156797 hasConceptScore W2626156797C121332964 @default.
- W2626156797 hasConceptScore W2626156797C135593079 @default.
- W2626156797 hasConceptScore W2626156797C173848574 @default.
- W2626156797 hasConceptScore W2626156797C190470478 @default.
- W2626156797 hasConceptScore W2626156797C2524010 @default.
- W2626156797 hasConceptScore W2626156797C33332235 @default.
- W2626156797 hasConceptScore W2626156797C33923547 @default.
- W2626156797 hasConceptScore W2626156797C37914503 @default.
- W2626156797 hasConceptScore W2626156797C54613284 @default.
- W2626156797 hasConceptScore W2626156797C62520636 @default.
- W2626156797 hasConceptScore W2626156797C84114770 @default.
- W2626156797 hasConceptScore W2626156797C98214594 @default.
- W2626156797 hasLocation W26261567971 @default.
- W2626156797 hasOpenAccess W2626156797 @default.
- W2626156797 hasPrimaryLocation W26261567971 @default.
- W2626156797 hasRelatedWork W1523621545 @default.
- W2626156797 hasRelatedWork W1573229114 @default.
- W2626156797 hasRelatedWork W1603535364 @default.
- W2626156797 hasRelatedWork W1844535912 @default.
- W2626156797 hasRelatedWork W1970274920 @default.
- W2626156797 hasRelatedWork W2009872036 @default.
- W2626156797 hasRelatedWork W2017050135 @default.
- W2626156797 hasRelatedWork W2028808693 @default.
- W2626156797 hasRelatedWork W2036572347 @default.
- W2626156797 hasRelatedWork W2055325422 @default.
- W2626156797 hasRelatedWork W2070441109 @default.
- W2626156797 hasRelatedWork W2076588829 @default.
- W2626156797 hasRelatedWork W2136205252 @default.
- W2626156797 hasRelatedWork W2157486378 @default.
- W2626156797 hasRelatedWork W2496987389 @default.
- W2626156797 hasRelatedWork W2890643928 @default.
- W2626156797 hasRelatedWork W3042916344 @default.
- W2626156797 hasRelatedWork W3098194166 @default.
- W2626156797 hasRelatedWork W3103449896 @default.
- W2626156797 hasRelatedWork W3106393560 @default.
- W2626156797 isParatext "false" @default.
- W2626156797 isRetracted "false" @default.
- W2626156797 magId "2626156797" @default.
- W2626156797 workType "dissertation" @default.