Matches in SemOpenAlex for { <https://semopenalex.org/work/W2626569803> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2626569803 endingPage "34" @default.
- W2626569803 startingPage "24" @default.
- W2626569803 abstract "Accurate modeling of total building energy is now vital to reduce energy consumption. This is especially true for buildings since they are considered as the largest energy consumer in the United States. This paper investigates modeling methods for building energy-systems using non-linear auto-regression artificial neural networks. The proposed model can forecast the whole building energy consumptions given the four input variables: Dry-bulb and wet-bulb outdoor air temperatures, hours of day and type of days. In addition, the paper presents optimization process that uses genetic algorithm to determine the best model structure by minimizing the model errors. Statistical indexes such as the root mean-square error RMSE and the coefficient of variance CV of RMSE are used to measure the model accuracy. The data was collected from existing buildings and from simulations. The collected data was used to test and train the proposed models as well as in the optimization process. Various neural network structures were tested using different inputs and feedback delays. The results show that the proposed model can accurately predict the energy consumptions. The CV values were within a range of 1.7 and 7.7%. It also proves that the model can be used for saving estimation applications and different energy efficiency." @default.
- W2626569803 created "2017-06-23" @default.
- W2626569803 creator A5000883043 @default.
- W2626569803 creator A5032061020 @default.
- W2626569803 creator A5076491668 @default.
- W2626569803 creator A5077681846 @default.
- W2626569803 date "2016-02-01" @default.
- W2626569803 modified "2023-10-16" @default.
- W2626569803 title "Building Energy Modeling Using Artificial Neural Networks" @default.
- W2626569803 cites W1968845391 @default.
- W2626569803 cites W2058294246 @default.
- W2626569803 cites W2165444651 @default.
- W2626569803 doi "https://doi.org/10.3844/erjsp.2016.24.34" @default.
- W2626569803 hasPublicationYear "2016" @default.
- W2626569803 type Work @default.
- W2626569803 sameAs 2626569803 @default.
- W2626569803 citedByCount "5" @default.
- W2626569803 countsByYear W26265698032019 @default.
- W2626569803 countsByYear W26265698032020 @default.
- W2626569803 countsByYear W26265698032022 @default.
- W2626569803 countsByYear W26265698032023 @default.
- W2626569803 crossrefType "journal-article" @default.
- W2626569803 hasAuthorship W2626569803A5000883043 @default.
- W2626569803 hasAuthorship W2626569803A5032061020 @default.
- W2626569803 hasAuthorship W2626569803A5076491668 @default.
- W2626569803 hasAuthorship W2626569803A5077681846 @default.
- W2626569803 hasBestOaLocation W26265698031 @default.
- W2626569803 hasConcept C105795698 @default.
- W2626569803 hasConcept C111919701 @default.
- W2626569803 hasConcept C119599485 @default.
- W2626569803 hasConcept C119857082 @default.
- W2626569803 hasConcept C121955636 @default.
- W2626569803 hasConcept C127413603 @default.
- W2626569803 hasConcept C139945424 @default.
- W2626569803 hasConcept C144133560 @default.
- W2626569803 hasConcept C146978453 @default.
- W2626569803 hasConcept C154945302 @default.
- W2626569803 hasConcept C186370098 @default.
- W2626569803 hasConcept C196083921 @default.
- W2626569803 hasConcept C204323151 @default.
- W2626569803 hasConcept C2776409380 @default.
- W2626569803 hasConcept C2780165032 @default.
- W2626569803 hasConcept C2982928256 @default.
- W2626569803 hasConcept C33923547 @default.
- W2626569803 hasConcept C41008148 @default.
- W2626569803 hasConcept C50644808 @default.
- W2626569803 hasConcept C8880873 @default.
- W2626569803 hasConcept C98045186 @default.
- W2626569803 hasConceptScore W2626569803C105795698 @default.
- W2626569803 hasConceptScore W2626569803C111919701 @default.
- W2626569803 hasConceptScore W2626569803C119599485 @default.
- W2626569803 hasConceptScore W2626569803C119857082 @default.
- W2626569803 hasConceptScore W2626569803C121955636 @default.
- W2626569803 hasConceptScore W2626569803C127413603 @default.
- W2626569803 hasConceptScore W2626569803C139945424 @default.
- W2626569803 hasConceptScore W2626569803C144133560 @default.
- W2626569803 hasConceptScore W2626569803C146978453 @default.
- W2626569803 hasConceptScore W2626569803C154945302 @default.
- W2626569803 hasConceptScore W2626569803C186370098 @default.
- W2626569803 hasConceptScore W2626569803C196083921 @default.
- W2626569803 hasConceptScore W2626569803C204323151 @default.
- W2626569803 hasConceptScore W2626569803C2776409380 @default.
- W2626569803 hasConceptScore W2626569803C2780165032 @default.
- W2626569803 hasConceptScore W2626569803C2982928256 @default.
- W2626569803 hasConceptScore W2626569803C33923547 @default.
- W2626569803 hasConceptScore W2626569803C41008148 @default.
- W2626569803 hasConceptScore W2626569803C50644808 @default.
- W2626569803 hasConceptScore W2626569803C8880873 @default.
- W2626569803 hasConceptScore W2626569803C98045186 @default.
- W2626569803 hasIssue "2" @default.
- W2626569803 hasLocation W26265698031 @default.
- W2626569803 hasOpenAccess W2626569803 @default.
- W2626569803 hasPrimaryLocation W26265698031 @default.
- W2626569803 hasRelatedWork W2037844790 @default.
- W2626569803 hasRelatedWork W2068383584 @default.
- W2626569803 hasRelatedWork W2072862869 @default.
- W2626569803 hasRelatedWork W2095472540 @default.
- W2626569803 hasRelatedWork W2599766002 @default.
- W2626569803 hasRelatedWork W2794547316 @default.
- W2626569803 hasRelatedWork W2899726612 @default.
- W2626569803 hasRelatedWork W2937192525 @default.
- W2626569803 hasRelatedWork W3035595432 @default.
- W2626569803 hasRelatedWork W3039465437 @default.
- W2626569803 hasVolume "7" @default.
- W2626569803 isParatext "false" @default.
- W2626569803 isRetracted "false" @default.
- W2626569803 magId "2626569803" @default.
- W2626569803 workType "article" @default.