Matches in SemOpenAlex for { <https://semopenalex.org/work/W2626769426> ?p ?o ?g. }
- W2626769426 endingPage "1891" @default.
- W2626769426 startingPage "1885" @default.
- W2626769426 abstract "Wear status identification including wear rate estimation and wear mechanism assessment can be performed using wear debris information. However, although on-line monitoring methods have distinctive advantages over off-line approaches, existing on-line monitoring methods provide limited features of wear particles and have difficulties characterising complex wear states. Most of them determine wear status based on changes in the wear rates, and the wear mechanisms are not taken into consideration. Therefore, comprehensive wear state identification is a bottleneck in real-time machine health monitoring for condition-based maintenance. In order to further advance on-line monitoring technology, this paper, in a case study format, presents a new approach for wear state characterisation using comprehensive wear debris features. For this purpose, wear experiments were carried out on a four-ball rig, and a particle imaging system was employed to capture videos of moving particles to acquire dynamic features. Based on this, wear particles were firstly counted to characterise wear rate. In this stage, a statistical clustering model was established using a mean-shift algorithm to categorise wear debris samples. A trend of wear state evolution was thus obtained. Secondly, the size, shape and colour of wear debris were extracted to identify particles into fatigue, sliding and oxides for wear mechanism analysis. The analysis results of wear mechanisms were related to the trend of the wear state. Correspondingly, a changing chart that contains the wear degree and wear mechanisms was drawn. Therefore, an on-line system has been developed to capture comprehensive particle information to assess the wear severity and mechanisms for in-depth wear analysis and full-life machine condition monitoring." @default.
- W2626769426 created "2017-06-23" @default.
- W2626769426 creator A5020022566 @default.
- W2626769426 creator A5037918959 @default.
- W2626769426 creator A5043327084 @default.
- W2626769426 creator A5084765072 @default.
- W2626769426 date "2017-04-01" @default.
- W2626769426 modified "2023-10-10" @default.
- W2626769426 title "Wear state identification using dynamic features of wear debris for on-line purpose" @default.
- W2626769426 cites W1965190885 @default.
- W2626769426 cites W1977602933 @default.
- W2626769426 cites W1978136725 @default.
- W2626769426 cites W1981049948 @default.
- W2626769426 cites W1995550639 @default.
- W2626769426 cites W2000652429 @default.
- W2626769426 cites W2000743683 @default.
- W2626769426 cites W2002060839 @default.
- W2626769426 cites W2014117100 @default.
- W2626769426 cites W2018312383 @default.
- W2626769426 cites W2037325790 @default.
- W2626769426 cites W2038565761 @default.
- W2626769426 cites W2041874577 @default.
- W2626769426 cites W2049363401 @default.
- W2626769426 cites W2049833369 @default.
- W2626769426 cites W2067191022 @default.
- W2626769426 cites W2068057588 @default.
- W2626769426 cites W2068726044 @default.
- W2626769426 cites W2072457396 @default.
- W2626769426 cites W2074299074 @default.
- W2626769426 cites W2084208605 @default.
- W2626769426 cites W2092478576 @default.
- W2626769426 cites W2095301846 @default.
- W2626769426 cites W2100961932 @default.
- W2626769426 cites W2110661788 @default.
- W2626769426 cites W2166734203 @default.
- W2626769426 cites W2170433518 @default.
- W2626769426 cites W2254506961 @default.
- W2626769426 cites W22548722 @default.
- W2626769426 cites W2471322744 @default.
- W2626769426 cites W2528665089 @default.
- W2626769426 cites W3173561527 @default.
- W2626769426 doi "https://doi.org/10.1016/j.wear.2017.01.012" @default.
- W2626769426 hasPublicationYear "2017" @default.
- W2626769426 type Work @default.
- W2626769426 sameAs 2626769426 @default.
- W2626769426 citedByCount "35" @default.
- W2626769426 countsByYear W26267694262017 @default.
- W2626769426 countsByYear W26267694262018 @default.
- W2626769426 countsByYear W26267694262019 @default.
- W2626769426 countsByYear W26267694262020 @default.
- W2626769426 countsByYear W26267694262021 @default.
- W2626769426 countsByYear W26267694262022 @default.
- W2626769426 countsByYear W26267694262023 @default.
- W2626769426 crossrefType "journal-article" @default.
- W2626769426 hasAuthorship W2626769426A5020022566 @default.
- W2626769426 hasAuthorship W2626769426A5037918959 @default.
- W2626769426 hasAuthorship W2626769426A5043327084 @default.
- W2626769426 hasAuthorship W2626769426A5084765072 @default.
- W2626769426 hasBestOaLocation W26267694261 @default.
- W2626769426 hasConcept C116834253 @default.
- W2626769426 hasConcept C121332964 @default.
- W2626769426 hasConcept C127413603 @default.
- W2626769426 hasConcept C149635348 @default.
- W2626769426 hasConcept C153294291 @default.
- W2626769426 hasConcept C191897082 @default.
- W2626769426 hasConcept C192562407 @default.
- W2626769426 hasConcept C198352243 @default.
- W2626769426 hasConcept C2524010 @default.
- W2626769426 hasConcept C2776023875 @default.
- W2626769426 hasConcept C2776450708 @default.
- W2626769426 hasConcept C2780513914 @default.
- W2626769426 hasConcept C33923547 @default.
- W2626769426 hasConcept C41008148 @default.
- W2626769426 hasConcept C523214423 @default.
- W2626769426 hasConcept C59822182 @default.
- W2626769426 hasConcept C77595967 @default.
- W2626769426 hasConcept C78519656 @default.
- W2626769426 hasConcept C86803240 @default.
- W2626769426 hasConceptScore W2626769426C116834253 @default.
- W2626769426 hasConceptScore W2626769426C121332964 @default.
- W2626769426 hasConceptScore W2626769426C127413603 @default.
- W2626769426 hasConceptScore W2626769426C149635348 @default.
- W2626769426 hasConceptScore W2626769426C153294291 @default.
- W2626769426 hasConceptScore W2626769426C191897082 @default.
- W2626769426 hasConceptScore W2626769426C192562407 @default.
- W2626769426 hasConceptScore W2626769426C198352243 @default.
- W2626769426 hasConceptScore W2626769426C2524010 @default.
- W2626769426 hasConceptScore W2626769426C2776023875 @default.
- W2626769426 hasConceptScore W2626769426C2776450708 @default.
- W2626769426 hasConceptScore W2626769426C2780513914 @default.
- W2626769426 hasConceptScore W2626769426C33923547 @default.
- W2626769426 hasConceptScore W2626769426C41008148 @default.
- W2626769426 hasConceptScore W2626769426C523214423 @default.
- W2626769426 hasConceptScore W2626769426C59822182 @default.
- W2626769426 hasConceptScore W2626769426C77595967 @default.
- W2626769426 hasConceptScore W2626769426C78519656 @default.
- W2626769426 hasConceptScore W2626769426C86803240 @default.
- W2626769426 hasFunder F4320321001 @default.