Matches in SemOpenAlex for { <https://semopenalex.org/work/W2641483017> ?p ?o ?g. }
- W2641483017 endingPage "179" @default.
- W2641483017 startingPage "168" @default.
- W2641483017 abstract "Land use regression models are an established method for estimating spatial variability in gaseous pollutant levels across urban areas. Existing LUR models have been developed to predict annual average concentrations of airborne pollutants. None of those models have been developed to predict daily average concentrations, which are useful in health studies focused on the acute impacts of air pollution. In this study, we developed LUR models to predict daily NO2 and NOx concentrations during 2009–2012 in the Brisbane Metropolitan Area (BMA), Australia's third-largest city. The final models explained 64% and 70% of spatial variability in NO2 and NOx, respectively, with leave-one-out-cross-validation R2 of 3–49% and 2–51%. Distance to major road and industrial area were the common predictor variables for both NO2 and NOx, suggesting an important role for road traffic and industrial emissions. The novel modeling approach adopted here can be applied in other urban locations in epidemiological studies." @default.
- W2641483017 created "2017-06-30" @default.
- W2641483017 creator A5012388145 @default.
- W2641483017 creator A5019979485 @default.
- W2641483017 creator A5066175060 @default.
- W2641483017 creator A5067749486 @default.
- W2641483017 creator A5070726242 @default.
- W2641483017 date "2017-09-01" @default.
- W2641483017 modified "2023-10-16" @default.
- W2641483017 title "Development of a land use regression model for daily NO 2 and NO x concentrations in the Brisbane metropolitan area, Australia" @default.
- W2641483017 cites W1145041632 @default.
- W2641483017 cites W1801957311 @default.
- W2641483017 cites W1974074621 @default.
- W2641483017 cites W1990420052 @default.
- W2641483017 cites W1991350060 @default.
- W2641483017 cites W1991598993 @default.
- W2641483017 cites W1991781618 @default.
- W2641483017 cites W1993983873 @default.
- W2641483017 cites W2001451992 @default.
- W2641483017 cites W2004096570 @default.
- W2641483017 cites W2008959035 @default.
- W2641483017 cites W2035403317 @default.
- W2641483017 cites W2063683115 @default.
- W2641483017 cites W2069640186 @default.
- W2641483017 cites W2071716752 @default.
- W2641483017 cites W2084437267 @default.
- W2641483017 cites W2084554826 @default.
- W2641483017 cites W2090743055 @default.
- W2641483017 cites W2098637521 @default.
- W2641483017 cites W2101982704 @default.
- W2641483017 cites W2115569900 @default.
- W2641483017 cites W2119019979 @default.
- W2641483017 cites W2153641546 @default.
- W2641483017 cites W2154589423 @default.
- W2641483017 cites W2155720527 @default.
- W2641483017 cites W2168634228 @default.
- W2641483017 cites W2256161737 @default.
- W2641483017 cites W2321180029 @default.
- W2641483017 cites W2394016895 @default.
- W2641483017 doi "https://doi.org/10.1016/j.envsoft.2017.06.029" @default.
- W2641483017 hasPublicationYear "2017" @default.
- W2641483017 type Work @default.
- W2641483017 sameAs 2641483017 @default.
- W2641483017 citedByCount "31" @default.
- W2641483017 countsByYear W26414830172018 @default.
- W2641483017 countsByYear W26414830172019 @default.
- W2641483017 countsByYear W26414830172020 @default.
- W2641483017 countsByYear W26414830172021 @default.
- W2641483017 countsByYear W26414830172022 @default.
- W2641483017 countsByYear W26414830172023 @default.
- W2641483017 crossrefType "journal-article" @default.
- W2641483017 hasAuthorship W2641483017A5012388145 @default.
- W2641483017 hasAuthorship W2641483017A5019979485 @default.
- W2641483017 hasAuthorship W2641483017A5066175060 @default.
- W2641483017 hasAuthorship W2641483017A5067749486 @default.
- W2641483017 hasAuthorship W2641483017A5070726242 @default.
- W2641483017 hasConcept C100970517 @default.
- W2641483017 hasConcept C105795698 @default.
- W2641483017 hasConcept C105923489 @default.
- W2641483017 hasConcept C127413603 @default.
- W2641483017 hasConcept C147176958 @default.
- W2641483017 hasConcept C152877465 @default.
- W2641483017 hasConcept C153294291 @default.
- W2641483017 hasConcept C158739034 @default.
- W2641483017 hasConcept C166957645 @default.
- W2641483017 hasConcept C178790620 @default.
- W2641483017 hasConcept C180949853 @default.
- W2641483017 hasConcept C185592680 @default.
- W2641483017 hasConcept C18903297 @default.
- W2641483017 hasConcept C203032635 @default.
- W2641483017 hasConcept C205649164 @default.
- W2641483017 hasConcept C2987853052 @default.
- W2641483017 hasConcept C33923547 @default.
- W2641483017 hasConcept C39432304 @default.
- W2641483017 hasConcept C4792198 @default.
- W2641483017 hasConcept C559116025 @default.
- W2641483017 hasConcept C82685317 @default.
- W2641483017 hasConcept C86803240 @default.
- W2641483017 hasConceptScore W2641483017C100970517 @default.
- W2641483017 hasConceptScore W2641483017C105795698 @default.
- W2641483017 hasConceptScore W2641483017C105923489 @default.
- W2641483017 hasConceptScore W2641483017C127413603 @default.
- W2641483017 hasConceptScore W2641483017C147176958 @default.
- W2641483017 hasConceptScore W2641483017C152877465 @default.
- W2641483017 hasConceptScore W2641483017C153294291 @default.
- W2641483017 hasConceptScore W2641483017C158739034 @default.
- W2641483017 hasConceptScore W2641483017C166957645 @default.
- W2641483017 hasConceptScore W2641483017C178790620 @default.
- W2641483017 hasConceptScore W2641483017C180949853 @default.
- W2641483017 hasConceptScore W2641483017C185592680 @default.
- W2641483017 hasConceptScore W2641483017C18903297 @default.
- W2641483017 hasConceptScore W2641483017C203032635 @default.
- W2641483017 hasConceptScore W2641483017C205649164 @default.
- W2641483017 hasConceptScore W2641483017C2987853052 @default.
- W2641483017 hasConceptScore W2641483017C33923547 @default.
- W2641483017 hasConceptScore W2641483017C39432304 @default.
- W2641483017 hasConceptScore W2641483017C4792198 @default.
- W2641483017 hasConceptScore W2641483017C559116025 @default.