Matches in SemOpenAlex for { <https://semopenalex.org/work/W2643628297> ?p ?o ?g. }
- W2643628297 abstract "Human activity recognition in video camera is the prime research topic in computer vision and machine learning since last many years. Visual cameras have been used in public and private place like railway station, shopping malls, airport, offices, schools and university, etc. to recognize threat in the scene. The automated visual surveillance system will help to catch suspect in the scene, person identification in distance and re-identification, traffic management, sports, human computer interface, etc. Generally speaking, the human activity recognition in visual surveillance divided into following stages: object (human or vehicle) segmentation, feature extraction, object classification, object tracking, and activity recognition. Hence, the robust and object segmentation method in video camera is a very important phase because the rest of methods are strongly rely on it. In this paper, we have studied the various methods and/or algorithms of object segmentation (human). We will also discuss the strength and weakness of algorithms, complexities in activity understanding and identify the possible future research challenges." @default.
- W2643628297 created "2017-06-30" @default.
- W2643628297 creator A5022793244 @default.
- W2643628297 creator A5050448716 @default.
- W2643628297 date "2016-12-01" @default.
- W2643628297 modified "2023-09-27" @default.
- W2643628297 title "Exploring object segmentation methods in visual surveillance for human activity recognition" @default.
- W2643628297 cites W1596308368 @default.
- W2643628297 cites W1693345094 @default.
- W2643628297 cites W1753552796 @default.
- W2643628297 cites W1894500138 @default.
- W2643628297 cites W1906593853 @default.
- W2643628297 cites W1964806982 @default.
- W2643628297 cites W1986332658 @default.
- W2643628297 cites W1986619723 @default.
- W2643628297 cites W1989348325 @default.
- W2643628297 cites W2004149082 @default.
- W2643628297 cites W2012027675 @default.
- W2643628297 cites W2012184117 @default.
- W2643628297 cites W2019595010 @default.
- W2643628297 cites W2025856069 @default.
- W2643628297 cites W2059471177 @default.
- W2643628297 cites W2065072504 @default.
- W2643628297 cites W2071509342 @default.
- W2643628297 cites W2082453965 @default.
- W2643628297 cites W2110206255 @default.
- W2643628297 cites W2110717643 @default.
- W2643628297 cites W2117490925 @default.
- W2643628297 cites W2118877769 @default.
- W2643628297 cites W2120790731 @default.
- W2643628297 cites W2121274305 @default.
- W2643628297 cites W2123669803 @default.
- W2643628297 cites W2124601375 @default.
- W2643628297 cites W2125105611 @default.
- W2643628297 cites W2130103520 @default.
- W2643628297 cites W2130990065 @default.
- W2643628297 cites W2131729179 @default.
- W2643628297 cites W2137019369 @default.
- W2643628297 cites W2138626738 @default.
- W2643628297 cites W2140235142 @default.
- W2643628297 cites W2147393230 @default.
- W2643628297 cites W2148309101 @default.
- W2643628297 cites W2151458682 @default.
- W2643628297 cites W2153507502 @default.
- W2643628297 cites W2153694774 @default.
- W2643628297 cites W2154346517 @default.
- W2643628297 cites W2155351433 @default.
- W2643628297 cites W2156059598 @default.
- W2643628297 cites W2158301611 @default.
- W2643628297 cites W2158782090 @default.
- W2643628297 cites W2163747463 @default.
- W2643628297 cites W2165281281 @default.
- W2643628297 cites W2166061769 @default.
- W2643628297 cites W2166978545 @default.
- W2643628297 cites W2533858083 @default.
- W2643628297 cites W3094885158 @default.
- W2643628297 cites W3144939502 @default.
- W2643628297 doi "https://doi.org/10.1109/icgtspicc.2016.7955356" @default.
- W2643628297 hasPublicationYear "2016" @default.
- W2643628297 type Work @default.
- W2643628297 sameAs 2643628297 @default.
- W2643628297 citedByCount "4" @default.
- W2643628297 countsByYear W26436282972021 @default.
- W2643628297 countsByYear W26436282972022 @default.
- W2643628297 crossrefType "proceedings-article" @default.
- W2643628297 hasAuthorship W2643628297A5022793244 @default.
- W2643628297 hasAuthorship W2643628297A5050448716 @default.
- W2643628297 hasConcept C116834253 @default.
- W2643628297 hasConcept C121687571 @default.
- W2643628297 hasConcept C124504099 @default.
- W2643628297 hasConcept C154945302 @default.
- W2643628297 hasConcept C17744445 @default.
- W2643628297 hasConcept C199539241 @default.
- W2643628297 hasConcept C202474056 @default.
- W2643628297 hasConcept C2776151529 @default.
- W2643628297 hasConcept C2778223634 @default.
- W2643628297 hasConcept C2781238097 @default.
- W2643628297 hasConcept C31972630 @default.
- W2643628297 hasConcept C41008148 @default.
- W2643628297 hasConcept C52622490 @default.
- W2643628297 hasConcept C59822182 @default.
- W2643628297 hasConcept C64876066 @default.
- W2643628297 hasConcept C86803240 @default.
- W2643628297 hasConcept C89600930 @default.
- W2643628297 hasConceptScore W2643628297C116834253 @default.
- W2643628297 hasConceptScore W2643628297C121687571 @default.
- W2643628297 hasConceptScore W2643628297C124504099 @default.
- W2643628297 hasConceptScore W2643628297C154945302 @default.
- W2643628297 hasConceptScore W2643628297C17744445 @default.
- W2643628297 hasConceptScore W2643628297C199539241 @default.
- W2643628297 hasConceptScore W2643628297C202474056 @default.
- W2643628297 hasConceptScore W2643628297C2776151529 @default.
- W2643628297 hasConceptScore W2643628297C2778223634 @default.
- W2643628297 hasConceptScore W2643628297C2781238097 @default.
- W2643628297 hasConceptScore W2643628297C31972630 @default.
- W2643628297 hasConceptScore W2643628297C41008148 @default.
- W2643628297 hasConceptScore W2643628297C52622490 @default.
- W2643628297 hasConceptScore W2643628297C59822182 @default.
- W2643628297 hasConceptScore W2643628297C64876066 @default.
- W2643628297 hasConceptScore W2643628297C86803240 @default.