Matches in SemOpenAlex for { <https://semopenalex.org/work/W26459792> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W26459792 endingPage "202" @default.
- W26459792 startingPage "189" @default.
- W26459792 abstract "In [CG] we have not been able to answer a question on the maximal size of (generalized) rigid systems of R-modules over commutative rings; see Remark (5.3) in [CG]. A (generalized) rigid system at the cardinal ρ will be a set Gi (i∈p) of R-modules of power λ such that the endomorphism algebra Ena Gi coincides with a prescribed R-algebra A modulo some “inessential” endomorphisms which form an ideal Ines Gi. Furthermore Hom(Gi,Gj) consists of inessential homomorphisms only for any i ≠ j ∈ p. Naturally, we want ρ to be as large as possible which is ρ = 2λ . In all “classical cases” we derived ρ = 2λ , but it would be much nicer to obtain ρ = 2λ without any restrictions as assumed in [CG], Theorem 5.2(b). The following theorem will settle this problem which will be our main result." @default.
- W26459792 created "2016-06-24" @default.
- W26459792 creator A5065141517 @default.
- W26459792 date "1984-01-01" @default.
- W26459792 modified "2023-09-26" @default.
- W26459792 title "The Existence of Rigid Systems of Maximal Size" @default.
- W26459792 cites W2044634896 @default.
- W26459792 cites W2116725985 @default.
- W26459792 cites W2168746327 @default.
- W26459792 doi "https://doi.org/10.1007/978-3-7091-2814-5_12" @default.
- W26459792 hasPublicationYear "1984" @default.
- W26459792 type Work @default.
- W26459792 sameAs 26459792 @default.
- W26459792 citedByCount "2" @default.
- W26459792 crossrefType "book-chapter" @default.
- W26459792 hasAuthorship W26459792A5065141517 @default.
- W26459792 hasConcept C111472728 @default.
- W26459792 hasConcept C116858840 @default.
- W26459792 hasConcept C118211362 @default.
- W26459792 hasConcept C118615104 @default.
- W26459792 hasConcept C136119220 @default.
- W26459792 hasConcept C138885662 @default.
- W26459792 hasConcept C177264268 @default.
- W26459792 hasConcept C183778304 @default.
- W26459792 hasConcept C199360897 @default.
- W26459792 hasConcept C202444582 @default.
- W26459792 hasConcept C2776639384 @default.
- W26459792 hasConcept C33923547 @default.
- W26459792 hasConcept C4042151 @default.
- W26459792 hasConcept C41008148 @default.
- W26459792 hasConcept C54732982 @default.
- W26459792 hasConceptScore W26459792C111472728 @default.
- W26459792 hasConceptScore W26459792C116858840 @default.
- W26459792 hasConceptScore W26459792C118211362 @default.
- W26459792 hasConceptScore W26459792C118615104 @default.
- W26459792 hasConceptScore W26459792C136119220 @default.
- W26459792 hasConceptScore W26459792C138885662 @default.
- W26459792 hasConceptScore W26459792C177264268 @default.
- W26459792 hasConceptScore W26459792C183778304 @default.
- W26459792 hasConceptScore W26459792C199360897 @default.
- W26459792 hasConceptScore W26459792C202444582 @default.
- W26459792 hasConceptScore W26459792C2776639384 @default.
- W26459792 hasConceptScore W26459792C33923547 @default.
- W26459792 hasConceptScore W26459792C4042151 @default.
- W26459792 hasConceptScore W26459792C41008148 @default.
- W26459792 hasConceptScore W26459792C54732982 @default.
- W26459792 hasLocation W264597921 @default.
- W26459792 hasOpenAccess W26459792 @default.
- W26459792 hasPrimaryLocation W264597921 @default.
- W26459792 hasRelatedWork W1552931876 @default.
- W26459792 hasRelatedWork W2058487350 @default.
- W26459792 hasRelatedWork W2071347824 @default.
- W26459792 hasRelatedWork W2071709946 @default.
- W26459792 hasRelatedWork W2379636414 @default.
- W26459792 hasRelatedWork W26459792 @default.
- W26459792 hasRelatedWork W3037584104 @default.
- W26459792 hasRelatedWork W3158290107 @default.
- W26459792 hasRelatedWork W42764336 @default.
- W26459792 hasRelatedWork W815440431 @default.
- W26459792 isParatext "false" @default.
- W26459792 isRetracted "false" @default.
- W26459792 magId "26459792" @default.
- W26459792 workType "book-chapter" @default.