Matches in SemOpenAlex for { <https://semopenalex.org/work/W2647029588> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2647029588 endingPage "97" @default.
- W2647029588 startingPage "86" @default.
- W2647029588 abstract "As a non-hazardous and non-invasive approach to medical diagnostic imaging, ultrasound serves as an ideal candidate for tracking and monitoring pregnancy development. One critical assessment during the first trimester of the pregnancy is the size measurements of the Gestation Sac (GS) and the Yolk Sac (YS) from ultrasound images. Such measurements tend to give a strong indication on the viability of the pregnancy. This paper proposes a novel multi-level trainable segmentation method to achieve three objectives in the following order: (1) segmenting and measuring the GS, (2) automatically identifying the stage of pregnancy, and (3) segmenting and measuring the YS. The first level segmentation employs a trainable segmentation technique based on the histogram of oriented gradients to segment the GS and estimate its size. This is then followed by an automatic identification of the pregnancy stage based on histogram analysis of the content of the segmented GS. The second level segmentation is used after that to detect the YS and extract its relevant size measurements. A trained neural network classifier is employed to perform the segmentation at both levels. The effectiveness of the proposed solution has been evaluated by comparing the automatic size measurements of the GS and YS against the ones obtained gynaecologist. Experimental results on 199 ultrasound images demonstrate the effectiveness of the proposal in producing accurate measurements as well as identifying the correct stage of pregnancy." @default.
- W2647029588 created "2017-06-30" @default.
- W2647029588 creator A5037931595 @default.
- W2647029588 creator A5074796974 @default.
- W2647029588 creator A5087286412 @default.
- W2647029588 creator A5090572417 @default.
- W2647029588 date "2017-01-01" @default.
- W2647029588 modified "2023-09-28" @default.
- W2647029588 title "Multi-level Trainable Segmentation for Measuring Gestational and Yolk Sacs from Ultrasound Images" @default.
- W2647029588 cites W1983802033 @default.
- W2647029588 cites W2041483824 @default.
- W2647029588 cites W2041736101 @default.
- W2647029588 cites W2051113966 @default.
- W2647029588 cites W2066356046 @default.
- W2647029588 cites W2074481438 @default.
- W2647029588 cites W2109169956 @default.
- W2647029588 cites W2113154510 @default.
- W2647029588 cites W2170515021 @default.
- W2647029588 cites W2401495715 @default.
- W2647029588 cites W2402346854 @default.
- W2647029588 doi "https://doi.org/10.1007/978-3-319-60964-5_8" @default.
- W2647029588 hasPublicationYear "2017" @default.
- W2647029588 type Work @default.
- W2647029588 sameAs 2647029588 @default.
- W2647029588 citedByCount "0" @default.
- W2647029588 crossrefType "book-chapter" @default.
- W2647029588 hasAuthorship W2647029588A5037931595 @default.
- W2647029588 hasAuthorship W2647029588A5074796974 @default.
- W2647029588 hasAuthorship W2647029588A5087286412 @default.
- W2647029588 hasAuthorship W2647029588A5090572417 @default.
- W2647029588 hasBestOaLocation W26470295882 @default.
- W2647029588 hasConcept C115961682 @default.
- W2647029588 hasConcept C124504099 @default.
- W2647029588 hasConcept C126838900 @default.
- W2647029588 hasConcept C143753070 @default.
- W2647029588 hasConcept C153180895 @default.
- W2647029588 hasConcept C154945302 @default.
- W2647029588 hasConcept C2776038736 @default.
- W2647029588 hasConcept C2779234561 @default.
- W2647029588 hasConcept C31972630 @default.
- W2647029588 hasConcept C41008148 @default.
- W2647029588 hasConcept C46973012 @default.
- W2647029588 hasConcept C53533937 @default.
- W2647029588 hasConcept C54355233 @default.
- W2647029588 hasConcept C71924100 @default.
- W2647029588 hasConcept C86803240 @default.
- W2647029588 hasConcept C89600930 @default.
- W2647029588 hasConceptScore W2647029588C115961682 @default.
- W2647029588 hasConceptScore W2647029588C124504099 @default.
- W2647029588 hasConceptScore W2647029588C126838900 @default.
- W2647029588 hasConceptScore W2647029588C143753070 @default.
- W2647029588 hasConceptScore W2647029588C153180895 @default.
- W2647029588 hasConceptScore W2647029588C154945302 @default.
- W2647029588 hasConceptScore W2647029588C2776038736 @default.
- W2647029588 hasConceptScore W2647029588C2779234561 @default.
- W2647029588 hasConceptScore W2647029588C31972630 @default.
- W2647029588 hasConceptScore W2647029588C41008148 @default.
- W2647029588 hasConceptScore W2647029588C46973012 @default.
- W2647029588 hasConceptScore W2647029588C53533937 @default.
- W2647029588 hasConceptScore W2647029588C54355233 @default.
- W2647029588 hasConceptScore W2647029588C71924100 @default.
- W2647029588 hasConceptScore W2647029588C86803240 @default.
- W2647029588 hasConceptScore W2647029588C89600930 @default.
- W2647029588 hasLocation W26470295881 @default.
- W2647029588 hasLocation W26470295882 @default.
- W2647029588 hasOpenAccess W2647029588 @default.
- W2647029588 hasPrimaryLocation W26470295881 @default.
- W2647029588 hasRelatedWork W1534568064 @default.
- W2647029588 hasRelatedWork W1631910785 @default.
- W2647029588 hasRelatedWork W1669643531 @default.
- W2647029588 hasRelatedWork W1721780360 @default.
- W2647029588 hasRelatedWork W2110230079 @default.
- W2647029588 hasRelatedWork W2117664411 @default.
- W2647029588 hasRelatedWork W2117933325 @default.
- W2647029588 hasRelatedWork W2122581818 @default.
- W2647029588 hasRelatedWork W2159066190 @default.
- W2647029588 hasRelatedWork W2739874619 @default.
- W2647029588 isParatext "false" @default.
- W2647029588 isRetracted "false" @default.
- W2647029588 magId "2647029588" @default.
- W2647029588 workType "book-chapter" @default.