Matches in SemOpenAlex for { <https://semopenalex.org/work/W2648843192> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2648843192 abstract "In image processing literature, thus far researchers have assumed the perturbation in the data to be white (or uncorrelated) having a covariance matrix σ2I, i.e., assumption of equal variance for all the data samples and that no correlation exists between the data samples. However, there has been very little attempt to estimate noise characteristics under the assumption that there is correlation between data samples. We develop a new and novel approach for the estimation of the unknown colored noise covariance matrix. We use the facet model to describe the noise free image, because of its simple, yet elegant mathematical formulation.Original contributions of this dissertation include: (1) Development of a new and novel approach for the simultaneous estimation of the unknown colored (or correlated) noise covariance matrix and the hyperparameters of the covariance model using the facet model . We also estimate, simultaneously, coefficients of the facet model. (2) Introduction of the Generalized Inverted Wishart ( GJW ) distribution to the image processing and computer vision community. (3) Formulation of the problem solution in a Bayesian framework using an improper uniform prior distribution for the facet model coefficients (i.e. a flat prior) and a Generalized Inverted Wishart ( GJW ) prior distribution for the unknown noise covariance matrix that is to be estimated. (4) Placing a structure on the hypercovariance matrix of GJW distribution, such that its elements are a function of the coefficients of a correlation filter. These filter coefficients in addition to the number of degrees of freedom parameter of the GJW distribution are called the hyperparameters. (5) Hyperparameters have constraints placed on them so that the resulting hypercovariance matrix remains positive definite. Therefore, we designed a new extension of the expectation maximization algorithm called the generalized constrained expectation maximization (GCEM) algorithm for the estimation of the hyperparameters using the sequential unconstrained minimization technique (SUMT) via barrier functions to incorporate the constraints. (6) Development of a new ridge operator called the integrated second directional derivative ridge operator (ISDDRO) based on the facet model. Our main focus here is the optimal estimation of ridge orientation. The orientation bias and orientation standard deviation are the measures of performance. The latter measures the noise sensitivity. (7) Comparison of ISDDRO using the noise covariance matrix estimation (ISDDRO-CN) with the same ridge operator under white noise assumption (ISDDRO-WN) and also with the most competing ridge operator multilocal level set extrinsic curvature (MLSEC) [5]. ISDDRO-CN has superior noise sensitivity characteristics compared to both ISDDRO-WN and MLSEC." @default.
- W2648843192 created "2017-06-30" @default.
- W2648843192 creator A5003634526 @default.
- W2648843192 creator A5025478713 @default.
- W2648843192 date "2001-01-01" @default.
- W2648843192 modified "2023-09-24" @default.
- W2648843192 title "Noise covariance estimation in low-level computer vision" @default.
- W2648843192 hasPublicationYear "2001" @default.
- W2648843192 type Work @default.
- W2648843192 sameAs 2648843192 @default.
- W2648843192 citedByCount "1" @default.
- W2648843192 crossrefType "journal-article" @default.
- W2648843192 hasAuthorship W2648843192A5003634526 @default.
- W2648843192 hasAuthorship W2648843192A5025478713 @default.
- W2648843192 hasConcept C105795698 @default.
- W2648843192 hasConcept C112633086 @default.
- W2648843192 hasConcept C11413529 @default.
- W2648843192 hasConcept C137250428 @default.
- W2648843192 hasConcept C153180895 @default.
- W2648843192 hasConcept C154945302 @default.
- W2648843192 hasConcept C161584116 @default.
- W2648843192 hasConcept C178650346 @default.
- W2648843192 hasConcept C180877172 @default.
- W2648843192 hasConcept C185142706 @default.
- W2648843192 hasConcept C33923547 @default.
- W2648843192 hasConcept C33962027 @default.
- W2648843192 hasConcept C41008148 @default.
- W2648843192 hasConcept C83042196 @default.
- W2648843192 hasConceptScore W2648843192C105795698 @default.
- W2648843192 hasConceptScore W2648843192C112633086 @default.
- W2648843192 hasConceptScore W2648843192C11413529 @default.
- W2648843192 hasConceptScore W2648843192C137250428 @default.
- W2648843192 hasConceptScore W2648843192C153180895 @default.
- W2648843192 hasConceptScore W2648843192C154945302 @default.
- W2648843192 hasConceptScore W2648843192C161584116 @default.
- W2648843192 hasConceptScore W2648843192C178650346 @default.
- W2648843192 hasConceptScore W2648843192C180877172 @default.
- W2648843192 hasConceptScore W2648843192C185142706 @default.
- W2648843192 hasConceptScore W2648843192C33923547 @default.
- W2648843192 hasConceptScore W2648843192C33962027 @default.
- W2648843192 hasConceptScore W2648843192C41008148 @default.
- W2648843192 hasConceptScore W2648843192C83042196 @default.
- W2648843192 hasLocation W26488431921 @default.
- W2648843192 hasOpenAccess W2648843192 @default.
- W2648843192 hasPrimaryLocation W26488431921 @default.
- W2648843192 hasRelatedWork W1506256216 @default.
- W2648843192 hasRelatedWork W1552498431 @default.
- W2648843192 hasRelatedWork W1716904016 @default.
- W2648843192 hasRelatedWork W1834265579 @default.
- W2648843192 hasRelatedWork W1988882339 @default.
- W2648843192 hasRelatedWork W2060556984 @default.
- W2648843192 hasRelatedWork W2115059577 @default.
- W2648843192 hasRelatedWork W2131845917 @default.
- W2648843192 hasRelatedWork W2167010601 @default.
- W2648843192 hasRelatedWork W2168975566 @default.
- W2648843192 hasRelatedWork W2244328707 @default.
- W2648843192 hasRelatedWork W2332892524 @default.
- W2648843192 hasRelatedWork W2401561209 @default.
- W2648843192 hasRelatedWork W2522055410 @default.
- W2648843192 hasRelatedWork W2749550013 @default.
- W2648843192 hasRelatedWork W2891511458 @default.
- W2648843192 hasRelatedWork W2951063292 @default.
- W2648843192 hasRelatedWork W2967438070 @default.
- W2648843192 hasRelatedWork W855885160 @default.
- W2648843192 hasRelatedWork W1963526675 @default.
- W2648843192 isParatext "false" @default.
- W2648843192 isRetracted "false" @default.
- W2648843192 magId "2648843192" @default.
- W2648843192 workType "article" @default.