Matches in SemOpenAlex for { <https://semopenalex.org/work/W2650395120> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2650395120 abstract "We propose an automated framework for lung nodule segmentation from pulmonary CT scan using graph cut with a deep learned prior. The segmentation problem is formulated as a hybrid cost function minimization task, which combines a domain specific data term with a deep learned probability map. The proposed segmentation framework embodies the robustness of deep learning in object localization, while retaining the hallmark of traditional segmentation models in addressing the morphological intricacies of elaborate objects. The proposed solution offers more than 20% performance improvement over a contemporary data driven model, and also outperforms traditional graph cuts especially in situations where model initialization is slightly inaccurate." @default.
- W2650395120 created "2017-06-30" @default.
- W2650395120 creator A5001079850 @default.
- W2650395120 creator A5001999511 @default.
- W2650395120 creator A5076283372 @default.
- W2650395120 date "2017-04-01" @default.
- W2650395120 modified "2023-09-27" @default.
- W2650395120 title "Lung nodule segmentation using deep learned prior based graph cut" @default.
- W2650395120 cites W1891929162 @default.
- W2650395120 cites W1966991361 @default.
- W2650395120 cites W1988117153 @default.
- W2650395120 cites W1992632596 @default.
- W2650395120 cites W2027181118 @default.
- W2650395120 cites W2067123389 @default.
- W2650395120 cites W2119300483 @default.
- W2650395120 cites W2126446504 @default.
- W2650395120 cites W2131210398 @default.
- W2650395120 cites W2136325898 @default.
- W2650395120 cites W2170552969 @default.
- W2650395120 cites W2919115771 @default.
- W2650395120 cites W34838703 @default.
- W2650395120 cites W791362575 @default.
- W2650395120 doi "https://doi.org/10.1109/isbi.2017.7950733" @default.
- W2650395120 hasPublicationYear "2017" @default.
- W2650395120 type Work @default.
- W2650395120 sameAs 2650395120 @default.
- W2650395120 citedByCount "26" @default.
- W2650395120 countsByYear W26503951202018 @default.
- W2650395120 countsByYear W26503951202019 @default.
- W2650395120 countsByYear W26503951202020 @default.
- W2650395120 countsByYear W26503951202021 @default.
- W2650395120 countsByYear W26503951202022 @default.
- W2650395120 countsByYear W26503951202023 @default.
- W2650395120 crossrefType "proceedings-article" @default.
- W2650395120 hasAuthorship W2650395120A5001079850 @default.
- W2650395120 hasAuthorship W2650395120A5001999511 @default.
- W2650395120 hasAuthorship W2650395120A5076283372 @default.
- W2650395120 hasConcept C104317684 @default.
- W2650395120 hasConcept C108583219 @default.
- W2650395120 hasConcept C114466953 @default.
- W2650395120 hasConcept C124504099 @default.
- W2650395120 hasConcept C132525143 @default.
- W2650395120 hasConcept C153180895 @default.
- W2650395120 hasConcept C154945302 @default.
- W2650395120 hasConcept C185592680 @default.
- W2650395120 hasConcept C199360897 @default.
- W2650395120 hasConcept C25694479 @default.
- W2650395120 hasConcept C31972630 @default.
- W2650395120 hasConcept C41008148 @default.
- W2650395120 hasConcept C5134670 @default.
- W2650395120 hasConcept C55493867 @default.
- W2650395120 hasConcept C63479239 @default.
- W2650395120 hasConcept C65885262 @default.
- W2650395120 hasConcept C80444323 @default.
- W2650395120 hasConcept C89600930 @default.
- W2650395120 hasConceptScore W2650395120C104317684 @default.
- W2650395120 hasConceptScore W2650395120C108583219 @default.
- W2650395120 hasConceptScore W2650395120C114466953 @default.
- W2650395120 hasConceptScore W2650395120C124504099 @default.
- W2650395120 hasConceptScore W2650395120C132525143 @default.
- W2650395120 hasConceptScore W2650395120C153180895 @default.
- W2650395120 hasConceptScore W2650395120C154945302 @default.
- W2650395120 hasConceptScore W2650395120C185592680 @default.
- W2650395120 hasConceptScore W2650395120C199360897 @default.
- W2650395120 hasConceptScore W2650395120C25694479 @default.
- W2650395120 hasConceptScore W2650395120C31972630 @default.
- W2650395120 hasConceptScore W2650395120C41008148 @default.
- W2650395120 hasConceptScore W2650395120C5134670 @default.
- W2650395120 hasConceptScore W2650395120C55493867 @default.
- W2650395120 hasConceptScore W2650395120C63479239 @default.
- W2650395120 hasConceptScore W2650395120C65885262 @default.
- W2650395120 hasConceptScore W2650395120C80444323 @default.
- W2650395120 hasConceptScore W2650395120C89600930 @default.
- W2650395120 hasLocation W26503951201 @default.
- W2650395120 hasOpenAccess W2650395120 @default.
- W2650395120 hasPrimaryLocation W26503951201 @default.
- W2650395120 hasRelatedWork W2005476934 @default.
- W2650395120 hasRelatedWork W2043101002 @default.
- W2650395120 hasRelatedWork W2063855213 @default.
- W2650395120 hasRelatedWork W2163381555 @default.
- W2650395120 hasRelatedWork W2510758617 @default.
- W2650395120 hasRelatedWork W3083628868 @default.
- W2650395120 hasRelatedWork W3095523211 @default.
- W2650395120 hasRelatedWork W3180717499 @default.
- W2650395120 hasRelatedWork W4206076898 @default.
- W2650395120 hasRelatedWork W4287374609 @default.
- W2650395120 isParatext "false" @default.
- W2650395120 isRetracted "false" @default.
- W2650395120 magId "2650395120" @default.
- W2650395120 workType "article" @default.