Matches in SemOpenAlex for { <https://semopenalex.org/work/W2650687307> ?p ?o ?g. }
- W2650687307 endingPage "642" @default.
- W2650687307 startingPage "642" @default.
- W2650687307 abstract "In dry turning operation, various parameters influence the cutting force and contribute in machining precision. Generally, the numerical cutting models are adopted to establish the optimum cutting parameters and results are substantiated with the experimental findings. In this paper, the optimal turning parameters of AA2024-T351 alloy are determined through Abaqus/Explicit numerical cutting simulations by employing the Johnson-Cook thermo-viscoplastic-damage material model. Turning simulations were verified with published experimental data. Considering the constrained and nonlinear optimization problem, the artificial neural networks (ANN) were executed for training, testing, and performance evaluation of the numerical simulations data. Two feedforward backpropagation neural networks were developed with ten hidden neutrons in each hidden layer. The Log-Sigmoid transfer function and the Levenberg-Marquardt algorithm were applied in the model. The ANN models were studied with four input parameters: the cutting speed (200, 400, and 800 m/min), tool rake angle (5°, 10°, 14.8°, and 17.5°), cutting feed (0.3 and 0.4 mm), and the contact friction coefficients (0.1 and 0.15).The two target parameters include the tool-chip interface temperature and the cutting reaction force. The performance of the trained data was evaluated using root-mean-square error and correlation coefficients. The ANN predicted values were compared both with the Abaqus simulations and the published experimental findings. All of the results are found in good approximation to each other. The performance of the ANN models demonstrated the fidelity of solving and predicting the optimum process parameters." @default.
- W2650687307 created "2017-06-30" @default.
- W2650687307 creator A5001873126 @default.
- W2650687307 creator A5009615584 @default.
- W2650687307 creator A5012523105 @default.
- W2650687307 creator A5021735186 @default.
- W2650687307 creator A5048010853 @default.
- W2650687307 creator A5065904746 @default.
- W2650687307 creator A5087141747 @default.
- W2650687307 date "2017-06-21" @default.
- W2650687307 modified "2023-09-27" @default.
- W2650687307 title "Computational Analysis and Artificial Neural Network Optimization of Dry Turning Parameters—AA2024-T351" @default.
- W2650687307 cites W1978038518 @default.
- W2650687307 cites W1990555287 @default.
- W2650687307 cites W1994167151 @default.
- W2650687307 cites W1995385079 @default.
- W2650687307 cites W1996078578 @default.
- W2650687307 cites W1999233268 @default.
- W2650687307 cites W1999282426 @default.
- W2650687307 cites W1999314995 @default.
- W2650687307 cites W1999531737 @default.
- W2650687307 cites W2001209375 @default.
- W2650687307 cites W2002703437 @default.
- W2650687307 cites W2005455580 @default.
- W2650687307 cites W2006656759 @default.
- W2650687307 cites W2009474342 @default.
- W2650687307 cites W2013993358 @default.
- W2650687307 cites W2028070629 @default.
- W2650687307 cites W2029305454 @default.
- W2650687307 cites W2037435384 @default.
- W2650687307 cites W2038472109 @default.
- W2650687307 cites W2038606746 @default.
- W2650687307 cites W2039913618 @default.
- W2650687307 cites W2042644877 @default.
- W2650687307 cites W2049401973 @default.
- W2650687307 cites W2061464567 @default.
- W2650687307 cites W2064276710 @default.
- W2650687307 cites W2068681501 @default.
- W2650687307 cites W2071779306 @default.
- W2650687307 cites W2072959546 @default.
- W2650687307 cites W2075930281 @default.
- W2650687307 cites W2077486427 @default.
- W2650687307 cites W2082508622 @default.
- W2650687307 cites W2085783010 @default.
- W2650687307 cites W2086066199 @default.
- W2650687307 cites W2086827153 @default.
- W2650687307 cites W2094985601 @default.
- W2650687307 cites W2102017823 @default.
- W2650687307 cites W2109064309 @default.
- W2650687307 cites W2111939944 @default.
- W2650687307 cites W2128084896 @default.
- W2650687307 cites W2144104802 @default.
- W2650687307 cites W2152582461 @default.
- W2650687307 cites W2162111279 @default.
- W2650687307 cites W2430933984 @default.
- W2650687307 cites W2487830790 @default.
- W2650687307 cites W2538740062 @default.
- W2650687307 cites W2544124178 @default.
- W2650687307 cites W4236856801 @default.
- W2650687307 cites W4243526508 @default.
- W2650687307 cites W4375186667 @default.
- W2650687307 cites W65738273 @default.
- W2650687307 doi "https://doi.org/10.3390/app7060642" @default.
- W2650687307 hasPublicationYear "2017" @default.
- W2650687307 type Work @default.
- W2650687307 sameAs 2650687307 @default.
- W2650687307 citedByCount "15" @default.
- W2650687307 countsByYear W26506873072018 @default.
- W2650687307 countsByYear W26506873072019 @default.
- W2650687307 countsByYear W26506873072020 @default.
- W2650687307 countsByYear W26506873072022 @default.
- W2650687307 countsByYear W26506873072023 @default.
- W2650687307 crossrefType "journal-article" @default.
- W2650687307 hasAuthorship W2650687307A5001873126 @default.
- W2650687307 hasAuthorship W2650687307A5009615584 @default.
- W2650687307 hasAuthorship W2650687307A5012523105 @default.
- W2650687307 hasAuthorship W2650687307A5021735186 @default.
- W2650687307 hasAuthorship W2650687307A5048010853 @default.
- W2650687307 hasAuthorship W2650687307A5065904746 @default.
- W2650687307 hasAuthorship W2650687307A5087141747 @default.
- W2650687307 hasBestOaLocation W26506873071 @default.
- W2650687307 hasConcept C105795698 @default.
- W2650687307 hasConcept C121332964 @default.
- W2650687307 hasConcept C127413603 @default.
- W2650687307 hasConcept C135628077 @default.
- W2650687307 hasConcept C139945424 @default.
- W2650687307 hasConcept C154945302 @default.
- W2650687307 hasConcept C155032097 @default.
- W2650687307 hasConcept C158622935 @default.
- W2650687307 hasConcept C192562407 @default.
- W2650687307 hasConcept C202973686 @default.
- W2650687307 hasConcept C2779571069 @default.
- W2650687307 hasConcept C33923547 @default.
- W2650687307 hasConcept C41008148 @default.
- W2650687307 hasConcept C50644808 @default.
- W2650687307 hasConcept C523214423 @default.
- W2650687307 hasConcept C55359492 @default.
- W2650687307 hasConcept C62520636 @default.