Matches in SemOpenAlex for { <https://semopenalex.org/work/W2652772092> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2652772092 abstract "The mobility edges which separate the localized energy eigenstates from the extended ones exist normally only in three dimensional systems. For one-dimensional systems with random on-site potentials, one never encounters mobility edges, where all the eigenstates are localized. However, there are two kinds of 1D systems such as correlated disordered models, and the systems of exponentially decaying hopping kinetics, features of mobility edges at some specific values become possible. We study in this paper the properties of the mobility edges in a one-dimensional p-wave superfluid on an incommensurate lattice with exponentially decaying hopping kinetics. Without the p-wave superluid, the system displays a single mobility edge, which separates the extended regime from the localized one at a certain energy. Without the exponentially decaying hopping term, the system displays a phase transition from a topological superconductor to an Anderson localization at a certain disorder strength, where no mobility edge exists. We are interested in the influence of the p-wave superfluid on the mobility edge. By solving the Bogoliubov-de Gennes equation, the eigenvalues and the eigenfunctions are obtained. In order to identify the extending or the localized properties of the eigenvectors, we define an inverse participation ratio IPR. For an extended stat(e), IPRn similar to 1/L which goes to zero at a large L, and for a localized one, IPRn being constant. Therefore, the IPR can be taken as a criterion to distinguish the extended state from the localized one, while the mobility edge is defined as the boundary between two different states. We find that, with a p-wave superfluid, the system changes from a single mobility edge to a multiple one, and the number of mobility edges increases with the increased superfluid pairing order parameter. To further obtain the energy or the location of the mobility edge, we investigate the scaling behavior of wave functions by using a multifractal analysis, which is calculated through the scaling index alpha. The minimum value of the index, with the values alpha(min) = 1, 0 < alpha(min) < 1, and alpha(min) = 0, mean the extended, critical, and localized states, respectively. For the two consecutive states, the minima of the scaling index alpha(min) when extrapolating to the large size limit between 0 and 1 signal the mobility edge. By exploring the corresponding Bogoliubov quasi-particle wave functions for the system under open boundary conditions together with the multifractal analysis for the system under periodic boundary conditions, we identify two mobility edges for the system of the p-wave superfluid pairing. Furthermore, we will investigate how the existence of the mobility edges influences the p-wave superfluid, and identify the phase diagram at the given parameters. We will in the future try to understand the relationship between the topological superfluid and the mobility edges." @default.
- W2652772092 created "2017-06-30" @default.
- W2652772092 creator A5021278721 @default.
- W2652772092 creator A5040294762 @default.
- W2652772092 date "2016-01-01" @default.
- W2652772092 modified "2023-10-18" @default.
- W2652772092 title "Identifying the mobility edges in a one-dimensional incommensurate model with p-wave superfluid" @default.
- W2652772092 doi "https://doi.org/10.7498/aps.65.117101" @default.
- W2652772092 hasPublicationYear "2016" @default.
- W2652772092 type Work @default.
- W2652772092 sameAs 2652772092 @default.
- W2652772092 citedByCount "0" @default.
- W2652772092 crossrefType "journal-article" @default.
- W2652772092 hasAuthorship W2652772092A5021278721 @default.
- W2652772092 hasAuthorship W2652772092A5040294762 @default.
- W2652772092 hasBestOaLocation W26527720921 @default.
- W2652772092 hasConcept C121332964 @default.
- W2652772092 hasConcept C128803854 @default.
- W2652772092 hasConcept C134306372 @default.
- W2652772092 hasConcept C158693339 @default.
- W2652772092 hasConcept C162307627 @default.
- W2652772092 hasConcept C207467116 @default.
- W2652772092 hasConcept C24890656 @default.
- W2652772092 hasConcept C2524010 @default.
- W2652772092 hasConcept C25536358 @default.
- W2652772092 hasConcept C26873012 @default.
- W2652772092 hasConcept C2781204021 @default.
- W2652772092 hasConcept C33923547 @default.
- W2652772092 hasConcept C41008148 @default.
- W2652772092 hasConcept C54101563 @default.
- W2652772092 hasConcept C62354387 @default.
- W2652772092 hasConcept C62520636 @default.
- W2652772092 hasConcept C75235859 @default.
- W2652772092 hasConcept C76155785 @default.
- W2652772092 hasConceptScore W2652772092C121332964 @default.
- W2652772092 hasConceptScore W2652772092C128803854 @default.
- W2652772092 hasConceptScore W2652772092C134306372 @default.
- W2652772092 hasConceptScore W2652772092C158693339 @default.
- W2652772092 hasConceptScore W2652772092C162307627 @default.
- W2652772092 hasConceptScore W2652772092C207467116 @default.
- W2652772092 hasConceptScore W2652772092C24890656 @default.
- W2652772092 hasConceptScore W2652772092C2524010 @default.
- W2652772092 hasConceptScore W2652772092C25536358 @default.
- W2652772092 hasConceptScore W2652772092C26873012 @default.
- W2652772092 hasConceptScore W2652772092C2781204021 @default.
- W2652772092 hasConceptScore W2652772092C33923547 @default.
- W2652772092 hasConceptScore W2652772092C41008148 @default.
- W2652772092 hasConceptScore W2652772092C54101563 @default.
- W2652772092 hasConceptScore W2652772092C62354387 @default.
- W2652772092 hasConceptScore W2652772092C62520636 @default.
- W2652772092 hasConceptScore W2652772092C75235859 @default.
- W2652772092 hasConceptScore W2652772092C76155785 @default.
- W2652772092 hasLocation W26527720921 @default.
- W2652772092 hasOpenAccess W2652772092 @default.
- W2652772092 hasPrimaryLocation W26527720921 @default.
- W2652772092 hasRelatedWork W1660544999 @default.
- W2652772092 hasRelatedWork W1756956613 @default.
- W2652772092 hasRelatedWork W1988993536 @default.
- W2652772092 hasRelatedWork W1989232505 @default.
- W2652772092 hasRelatedWork W1989550590 @default.
- W2652772092 hasRelatedWork W2003221208 @default.
- W2652772092 hasRelatedWork W2057707062 @default.
- W2652772092 hasRelatedWork W2059257914 @default.
- W2652772092 hasRelatedWork W2085403749 @default.
- W2652772092 hasRelatedWork W2086052090 @default.
- W2652772092 hasRelatedWork W2122720595 @default.
- W2652772092 hasRelatedWork W2129835148 @default.
- W2652772092 hasRelatedWork W2960134964 @default.
- W2652772092 hasRelatedWork W2971579208 @default.
- W2652772092 hasRelatedWork W3099836838 @default.
- W2652772092 hasRelatedWork W3102333030 @default.
- W2652772092 hasRelatedWork W3102979647 @default.
- W2652772092 hasRelatedWork W3104364856 @default.
- W2652772092 hasRelatedWork W3140188473 @default.
- W2652772092 hasRelatedWork W3180154117 @default.
- W2652772092 isParatext "false" @default.
- W2652772092 isRetracted "false" @default.
- W2652772092 magId "2652772092" @default.
- W2652772092 workType "article" @default.