Matches in SemOpenAlex for { <https://semopenalex.org/work/W2658001520> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2658001520 endingPage "849" @default.
- W2658001520 startingPage "839" @default.
- W2658001520 abstract "Glomerulus classification in kidney tissue segments is a key process in nephropathology to obtain correct diseases diagnosis. In this paper, we deal with the challenge to automate the Glomerulus classification from digitized kidney slide segments using a deep learning framework. The proposed method applies Convolutional Neural Networks (CNNs) classification between two classes: Glomerulus and Non-Glomerulus, to detect the image segments belonging to Glomerulus regions. We configure the CNN with the public pre-trained AlexNet model, and adapt it to our system by learning from Glomerulus and Non-Glomerulus regions extracted from training slides. Once the model is trained, the labelling is performed applying the CNN classification to the image segments under analysis. The results obtained indicate that this technique is suitable for correct Glomerulus classification, showing robustness while reducing false positive and false negative detections." @default.
- W2658001520 created "2017-06-30" @default.
- W2658001520 creator A5017465563 @default.
- W2658001520 creator A5020844005 @default.
- W2658001520 creator A5023438344 @default.
- W2658001520 creator A5068267966 @default.
- W2658001520 creator A5071335046 @default.
- W2658001520 creator A5076240514 @default.
- W2658001520 date "2017-01-01" @default.
- W2658001520 modified "2023-10-10" @default.
- W2658001520 title "Glomerulus Classification with Convolutional Neural Networks" @default.
- W2658001520 cites W1884191083 @default.
- W2658001520 cites W1987325187 @default.
- W2658001520 cites W1989627494 @default.
- W2658001520 cites W1995460724 @default.
- W2658001520 cites W2025299767 @default.
- W2658001520 cites W2030335221 @default.
- W2658001520 cites W2044602548 @default.
- W2658001520 cites W2087347434 @default.
- W2658001520 cites W2097117768 @default.
- W2658001520 cites W2103061399 @default.
- W2658001520 cites W2105739910 @default.
- W2658001520 cites W2112028161 @default.
- W2658001520 cites W2158698691 @default.
- W2658001520 cites W2169458410 @default.
- W2658001520 cites W2252285100 @default.
- W2658001520 cites W2338609790 @default.
- W2658001520 cites W2470826940 @default.
- W2658001520 cites W2470965540 @default.
- W2658001520 cites W2504150216 @default.
- W2658001520 doi "https://doi.org/10.1007/978-3-319-60964-5_73" @default.
- W2658001520 hasPublicationYear "2017" @default.
- W2658001520 type Work @default.
- W2658001520 sameAs 2658001520 @default.
- W2658001520 citedByCount "36" @default.
- W2658001520 countsByYear W26580015202018 @default.
- W2658001520 countsByYear W26580015202019 @default.
- W2658001520 countsByYear W26580015202020 @default.
- W2658001520 countsByYear W26580015202021 @default.
- W2658001520 countsByYear W26580015202022 @default.
- W2658001520 countsByYear W26580015202023 @default.
- W2658001520 crossrefType "book-chapter" @default.
- W2658001520 hasAuthorship W2658001520A5017465563 @default.
- W2658001520 hasAuthorship W2658001520A5020844005 @default.
- W2658001520 hasAuthorship W2658001520A5023438344 @default.
- W2658001520 hasAuthorship W2658001520A5068267966 @default.
- W2658001520 hasAuthorship W2658001520A5071335046 @default.
- W2658001520 hasAuthorship W2658001520A5076240514 @default.
- W2658001520 hasConcept C134018914 @default.
- W2658001520 hasConcept C153180895 @default.
- W2658001520 hasConcept C154945302 @default.
- W2658001520 hasConcept C2778305430 @default.
- W2658001520 hasConcept C2780091579 @default.
- W2658001520 hasConcept C2780368995 @default.
- W2658001520 hasConcept C2910856063 @default.
- W2658001520 hasConcept C3018920779 @default.
- W2658001520 hasConcept C41008148 @default.
- W2658001520 hasConcept C81363708 @default.
- W2658001520 hasConcept C86803240 @default.
- W2658001520 hasConceptScore W2658001520C134018914 @default.
- W2658001520 hasConceptScore W2658001520C153180895 @default.
- W2658001520 hasConceptScore W2658001520C154945302 @default.
- W2658001520 hasConceptScore W2658001520C2778305430 @default.
- W2658001520 hasConceptScore W2658001520C2780091579 @default.
- W2658001520 hasConceptScore W2658001520C2780368995 @default.
- W2658001520 hasConceptScore W2658001520C2910856063 @default.
- W2658001520 hasConceptScore W2658001520C3018920779 @default.
- W2658001520 hasConceptScore W2658001520C41008148 @default.
- W2658001520 hasConceptScore W2658001520C81363708 @default.
- W2658001520 hasConceptScore W2658001520C86803240 @default.
- W2658001520 hasLocation W26580015201 @default.
- W2658001520 hasOpenAccess W2658001520 @default.
- W2658001520 hasPrimaryLocation W26580015201 @default.
- W2658001520 hasRelatedWork W2290657372 @default.
- W2658001520 hasRelatedWork W2405155612 @default.
- W2658001520 hasRelatedWork W2408813616 @default.
- W2658001520 hasRelatedWork W2443018555 @default.
- W2658001520 hasRelatedWork W2460480165 @default.
- W2658001520 hasRelatedWork W2767651786 @default.
- W2658001520 hasRelatedWork W2912288872 @default.
- W2658001520 hasRelatedWork W2990298458 @default.
- W2658001520 hasRelatedWork W4241864886 @default.
- W2658001520 hasRelatedWork W564581980 @default.
- W2658001520 isParatext "false" @default.
- W2658001520 isRetracted "false" @default.
- W2658001520 magId "2658001520" @default.
- W2658001520 workType "book-chapter" @default.