Matches in SemOpenAlex for { <https://semopenalex.org/work/W2669652692> ?p ?o ?g. }
- W2669652692 endingPage "29" @default.
- W2669652692 startingPage "1" @default.
- W2669652692 abstract "We present an attempt to reach realistic turbulent regime in direct numerical simulations of the geodynamo. We rely on a sequence of three convection-driven simulations in a rapidly rotating spherical shell. The most extreme case reaches towards the Earth’s core regime by lowering viscosity (magnetic Prandtl number Pm = 0.1) while maintaining vigorous convection (magnetic Reynolds number Rm > 500) and rapid rotation (Ekman number E = 10−7) at the limit of what is feasible on today’s supercomputers. A detailed and comprehensive analysis highlights several key features matching geomagnetic observations or dynamo theory predictions—all present together in the same simulation—but it also unveils interesting insights relevant for Earth’s core dynamics. In this strong-field, dipole-dominated dynamo simulation, the magnetic energy is one order of magnitude larger than the kinetic energy. The spatial distribution of magnetic intensity is highly heterogeneous, and a stark dynamical contrast exists between the interior and the exterior of the tangent cylinder (the cylinder parallel to the axis of rotation that circumscribes the inner core). In the interior, the magnetic field is strongest, and is associated with a vigorous twisted polar vortex, whose dynamics may occasionally lead to the formation of a reverse polar flux patch at the surface of the shell. Furthermore, the strong magnetic field also allows accumulation of light material within the tangent cylinder, leading to stable stratification there. Torsional Alfvén waves are frequently triggered in the vicinity of the tangent cylinder and propagate towards the equator. Outside the tangent cylinder, the magnetic field inhibits the growth of zonal winds and the kinetic energy is mostly non-zonal. Spatio-temporal analysis indicates that the low-frequency, non-zonal flow is quite geostrophic (columnar) and predominantly large-scale: an m = 1 eddy spontaneously emerges in our most extreme simulations, without any heterogeneous boundary forcing. Our spatio-temporal analysis further reveals that (i) the low-frequency, large-scale flow is governed by a balance between Coriolis and buoyancy forces—magnetic field and flow tend to align, minimizing the Lorentz force; (ii) the high-frequency flow obeys a balance between magnetic and Coriolis forces; (iii) the convective plumes mostly live at an intermediate scale, whose dynamics is driven by a three-term MAC balance—involving Coriolis, Lorentz and buoyancy forces. However, small-scale (≃E1/3) quasi-geostrophic convection is still observed in the regions of low magnetic intensity." @default.
- W2669652692 created "2017-06-30" @default.
- W2669652692 creator A5003970472 @default.
- W2669652692 creator A5030610307 @default.
- W2669652692 creator A5077765889 @default.
- W2669652692 creator A5079297873 @default.
- W2669652692 date "2017-06-30" @default.
- W2669652692 modified "2023-10-11" @default.
- W2669652692 title "Turbulent geodynamo simulations: a leap towards Earth’s core" @default.
- W2669652692 cites W1820374732 @default.
- W2669652692 cites W1826123213 @default.
- W2669652692 cites W1982997226 @default.
- W2669652692 cites W1985036388 @default.
- W2669652692 cites W1989582076 @default.
- W2669652692 cites W1995887929 @default.
- W2669652692 cites W1997989802 @default.
- W2669652692 cites W1999487763 @default.
- W2669652692 cites W2001953798 @default.
- W2669652692 cites W2010802074 @default.
- W2669652692 cites W2016892025 @default.
- W2669652692 cites W2017944111 @default.
- W2669652692 cites W2023653235 @default.
- W2669652692 cites W2029177555 @default.
- W2669652692 cites W2046012525 @default.
- W2669652692 cites W2051724188 @default.
- W2669652692 cites W2061190113 @default.
- W2669652692 cites W2066945211 @default.
- W2669652692 cites W2071160330 @default.
- W2669652692 cites W2087770146 @default.
- W2669652692 cites W2092388639 @default.
- W2669652692 cites W2113125401 @default.
- W2669652692 cites W2124556318 @default.
- W2669652692 cites W2132626212 @default.
- W2669652692 cites W2149138673 @default.
- W2669652692 cites W2151600275 @default.
- W2669652692 cites W2215644042 @default.
- W2669652692 cites W2263729109 @default.
- W2669652692 cites W2266357608 @default.
- W2669652692 cites W2278078319 @default.
- W2669652692 cites W2329823901 @default.
- W2669652692 cites W2340960550 @default.
- W2669652692 cites W2513023277 @default.
- W2669652692 cites W2531438100 @default.
- W2669652692 cites W2548311626 @default.
- W2669652692 cites W2565475803 @default.
- W2669652692 cites W2963906423 @default.
- W2669652692 cites W3098974615 @default.
- W2669652692 cites W3101179617 @default.
- W2669652692 cites W3121354812 @default.
- W2669652692 cites W3124244254 @default.
- W2669652692 doi "https://doi.org/10.1093/gji/ggx265" @default.
- W2669652692 hasPublicationYear "2017" @default.
- W2669652692 type Work @default.
- W2669652692 sameAs 2669652692 @default.
- W2669652692 citedByCount "167" @default.
- W2669652692 countsByYear W26696526922017 @default.
- W2669652692 countsByYear W26696526922018 @default.
- W2669652692 countsByYear W26696526922019 @default.
- W2669652692 countsByYear W26696526922020 @default.
- W2669652692 countsByYear W26696526922021 @default.
- W2669652692 countsByYear W26696526922022 @default.
- W2669652692 countsByYear W26696526922023 @default.
- W2669652692 crossrefType "journal-article" @default.
- W2669652692 hasAuthorship W2669652692A5003970472 @default.
- W2669652692 hasAuthorship W2669652692A5030610307 @default.
- W2669652692 hasAuthorship W2669652692A5077765889 @default.
- W2669652692 hasAuthorship W2669652692A5079297873 @default.
- W2669652692 hasBestOaLocation W26696526921 @default.
- W2669652692 hasConcept C105094362 @default.
- W2669652692 hasConcept C108280814 @default.
- W2669652692 hasConcept C10899652 @default.
- W2669652692 hasConcept C115260700 @default.
- W2669652692 hasConcept C121332964 @default.
- W2669652692 hasConcept C122523270 @default.
- W2669652692 hasConcept C1276947 @default.
- W2669652692 hasConcept C12980444 @default.
- W2669652692 hasConcept C135757623 @default.
- W2669652692 hasConcept C159985019 @default.
- W2669652692 hasConcept C190895841 @default.
- W2669652692 hasConcept C192562407 @default.
- W2669652692 hasConcept C199635899 @default.
- W2669652692 hasConcept C2781052500 @default.
- W2669652692 hasConcept C30475298 @default.
- W2669652692 hasConcept C41525736 @default.
- W2669652692 hasConcept C57879066 @default.
- W2669652692 hasConcept C62520636 @default.
- W2669652692 hasConcept C72782756 @default.
- W2669652692 hasConcept C74650414 @default.
- W2669652692 hasConcept C8058405 @default.
- W2669652692 hasConcept C92354476 @default.
- W2669652692 hasConceptScore W2669652692C105094362 @default.
- W2669652692 hasConceptScore W2669652692C108280814 @default.
- W2669652692 hasConceptScore W2669652692C10899652 @default.
- W2669652692 hasConceptScore W2669652692C115260700 @default.
- W2669652692 hasConceptScore W2669652692C121332964 @default.
- W2669652692 hasConceptScore W2669652692C122523270 @default.
- W2669652692 hasConceptScore W2669652692C1276947 @default.
- W2669652692 hasConceptScore W2669652692C12980444 @default.