Matches in SemOpenAlex for { <https://semopenalex.org/work/W2669968314> ?p ?o ?g. }
- W2669968314 endingPage "13" @default.
- W2669968314 startingPage "1" @default.
- W2669968314 abstract "A new parametric approach is proposed for nonlinear and nonstationary system identification based on a time-varying nonlinear autoregressive with exogenous input (TV-NARX) model. The TV coefficients of the TV-NARX model are expanded using multiwavelet basis functions, and the model is thus transformed into a time-invariant regression problem. An ultra-orthogonal forward regression (UOFR) algorithm aided by mutual information (MI) is designed to identify a parsimonious model structure and estimate the associated model parameters. The UOFR-MI algorithm, which uses not only the observed data themselves but also weak derivatives of the signals, is more powerful in model structure detection. The proposed approach combining the advantages of both the basis function expansion method and the UOFR-MI algorithm is proved to be capable of tracking the change of TV parameters effectively in both numerical simulations and the real EEG data." @default.
- W2669968314 created "2017-06-30" @default.
- W2669968314 creator A5023847501 @default.
- W2669968314 creator A5026841543 @default.
- W2669968314 creator A5056906467 @default.
- W2669968314 creator A5067818534 @default.
- W2669968314 creator A5074290686 @default.
- W2669968314 creator A5080585901 @default.
- W2669968314 date "2017-01-01" @default.
- W2669968314 modified "2023-10-13" @default.
- W2669968314 title "Time-Varying System Identification Using an Ultra-Orthogonal Forward Regression and Multiwavelet Basis Functions With Applications to EEG" @default.
- W2669968314 cites W1173784407 @default.
- W2669968314 cites W1726008881 @default.
- W2669968314 cites W1978053056 @default.
- W2669968314 cites W1993645200 @default.
- W2669968314 cites W1995614965 @default.
- W2669968314 cites W2011476012 @default.
- W2669968314 cites W2029896475 @default.
- W2669968314 cites W2062238294 @default.
- W2669968314 cites W2065738575 @default.
- W2669968314 cites W2079048852 @default.
- W2669968314 cites W2087197472 @default.
- W2669968314 cites W2092587625 @default.
- W2669968314 cites W2098149468 @default.
- W2669968314 cites W2098955183 @default.
- W2669968314 cites W2102380305 @default.
- W2669968314 cites W2102694325 @default.
- W2669968314 cites W2106934366 @default.
- W2669968314 cites W2113788162 @default.
- W2669968314 cites W2113862745 @default.
- W2669968314 cites W2118512402 @default.
- W2669968314 cites W2128483108 @default.
- W2669968314 cites W2134288234 @default.
- W2669968314 cites W2140035903 @default.
- W2669968314 cites W2142635246 @default.
- W2669968314 cites W2145516704 @default.
- W2669968314 cites W2148941460 @default.
- W2669968314 cites W2149550779 @default.
- W2669968314 cites W2158054309 @default.
- W2669968314 cites W2167898623 @default.
- W2669968314 cites W2267287690 @default.
- W2669968314 cites W2293644081 @default.
- W2669968314 cites W2503883016 @default.
- W2669968314 cites W2521283808 @default.
- W2669968314 cites W4241868268 @default.
- W2669968314 cites W4254218124 @default.
- W2669968314 cites W608773355 @default.
- W2669968314 cites W764681898 @default.
- W2669968314 doi "https://doi.org/10.1109/tnnls.2017.2709910" @default.
- W2669968314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28650829" @default.
- W2669968314 hasPublicationYear "2017" @default.
- W2669968314 type Work @default.
- W2669968314 sameAs 2669968314 @default.
- W2669968314 citedByCount "15" @default.
- W2669968314 countsByYear W26699683142017 @default.
- W2669968314 countsByYear W26699683142018 @default.
- W2669968314 countsByYear W26699683142019 @default.
- W2669968314 countsByYear W26699683142021 @default.
- W2669968314 countsByYear W26699683142022 @default.
- W2669968314 countsByYear W26699683142023 @default.
- W2669968314 crossrefType "journal-article" @default.
- W2669968314 hasAuthorship W2669968314A5023847501 @default.
- W2669968314 hasAuthorship W2669968314A5026841543 @default.
- W2669968314 hasAuthorship W2669968314A5056906467 @default.
- W2669968314 hasAuthorship W2669968314A5067818534 @default.
- W2669968314 hasAuthorship W2669968314A5074290686 @default.
- W2669968314 hasAuthorship W2669968314A5080585901 @default.
- W2669968314 hasBestOaLocation W26699683142 @default.
- W2669968314 hasConcept C105795698 @default.
- W2669968314 hasConcept C11413529 @default.
- W2669968314 hasConcept C117251300 @default.
- W2669968314 hasConcept C121332964 @default.
- W2669968314 hasConcept C12426560 @default.
- W2669968314 hasConcept C134306372 @default.
- W2669968314 hasConcept C153180895 @default.
- W2669968314 hasConcept C154945302 @default.
- W2669968314 hasConcept C158622935 @default.
- W2669968314 hasConcept C159877910 @default.
- W2669968314 hasConcept C190470478 @default.
- W2669968314 hasConcept C24574437 @default.
- W2669968314 hasConcept C2524010 @default.
- W2669968314 hasConcept C33923547 @default.
- W2669968314 hasConcept C37914503 @default.
- W2669968314 hasConcept C41008148 @default.
- W2669968314 hasConcept C42536954 @default.
- W2669968314 hasConcept C50644808 @default.
- W2669968314 hasConcept C5917680 @default.
- W2669968314 hasConcept C62520636 @default.
- W2669968314 hasConceptScore W2669968314C105795698 @default.
- W2669968314 hasConceptScore W2669968314C11413529 @default.
- W2669968314 hasConceptScore W2669968314C117251300 @default.
- W2669968314 hasConceptScore W2669968314C121332964 @default.
- W2669968314 hasConceptScore W2669968314C12426560 @default.
- W2669968314 hasConceptScore W2669968314C134306372 @default.
- W2669968314 hasConceptScore W2669968314C153180895 @default.
- W2669968314 hasConceptScore W2669968314C154945302 @default.
- W2669968314 hasConceptScore W2669968314C158622935 @default.
- W2669968314 hasConceptScore W2669968314C159877910 @default.