Matches in SemOpenAlex for { <https://semopenalex.org/work/W26725033> ?p ?o ?g. }
- W26725033 endingPage "110" @default.
- W26725033 startingPage "79" @default.
- W26725033 abstract "Abstract This study looks into Monte-Carlo simulation methods that are used for radiotherapy and radiobiology studies. Although simulation methodologies for the two mentioned fields are quite different since one deals with macroscopic effects rather than the cellular scale effects in the case of the other, the results obtained by both fields are complementary for understanding radiation effects on cellular substructures and the resulting reactions of irradiated biological tissues. It has been concluded through the literature that the deoxyribonucleic acid (DNA) damage is the most important result to look at among other radio-induced lesions in the cell. Thus, most of the research projects on radiation damage including Monte-Carlo studies are now concentrated on radio-induced DNA breaks and cell repair activities. Among the simulation programs we can distinguish the general purpose codes that are mostly used for macroscopic calculations and the step by step track structure codes that are dedicated for sub-cellular scale simulations mostly dealing with particles interactions with the DNA structure. However, none of the proposed toolkits can completely cover all the simulation cases since we are usually limited by the lack of cross sections for a certain particle type and in a certain energy domain depending on the code content. This obstacle can be overridden by some approximations on the macroscopic scale but when it comes to submicron calculations the energy deposit patterns should be as precise as possible for radiobiological analysis. On the DNA scale, chemical reactions and free radicals diffusion through target media were taken into account in some studies considering also the DNA structure geometry in the simulation. Although this type of approaches is aiming to be as realistic as possible, it can be a complex task to reproduce and also very time consuming requiring an important computing power. So in an effort to simplify and accelerate the calculations, several alternative methods were developed by different authors giving an acceptable estimation of radio-induced DNA damage quantification and making this issue more accessible for quick studies. The work described in this chapter reviews some of the numerical calculations of basic microdosimetric quantities for particles that are generally used in hadrontherapy, mainly protons and carbon ions, taking into account the secondary electrons tracks that are generated in tissue-like media (water). Using the Geant4-DNA package of the Geant4 Monte-Carlo simulation toolkit it is possible to track particles in a step by step mode taking also advantage of the available geometry modules and the standard physics processes of the standard Geant4 toolkit. Simulations are then described and the DNA damage quantification algorithms are studied with an effort to show the link between ionizing track structure and the resulting damage yields. The results obtained by different numerical methods are compared together then a discussion describes the advantages of each of the mentioned calculations." @default.
- W26725033 created "2016-06-24" @default.
- W26725033 creator A5047709858 @default.
- W26725033 date "2013-01-01" @default.
- W26725033 modified "2023-10-05" @default.
- W26725033 title "Molecular Scale Simulation of Ionizing Particles Tracks for Radiobiology and Hadrontherapy Studies" @default.
- W26725033 cites W1669679518 @default.
- W26725033 cites W1965004033 @default.
- W26725033 cites W1965613749 @default.
- W26725033 cites W1968435538 @default.
- W26725033 cites W1972359367 @default.
- W26725033 cites W1975052508 @default.
- W26725033 cites W1980608495 @default.
- W26725033 cites W1983626749 @default.
- W26725033 cites W1990092848 @default.
- W26725033 cites W1991938051 @default.
- W26725033 cites W1992931208 @default.
- W26725033 cites W1996916852 @default.
- W26725033 cites W1998583834 @default.
- W26725033 cites W1999205993 @default.
- W26725033 cites W2001382956 @default.
- W26725033 cites W2003725082 @default.
- W26725033 cites W2008939154 @default.
- W26725033 cites W2012268873 @default.
- W26725033 cites W2013405087 @default.
- W26725033 cites W2015824537 @default.
- W26725033 cites W2018520801 @default.
- W26725033 cites W2025437200 @default.
- W26725033 cites W2026812997 @default.
- W26725033 cites W2027573225 @default.
- W26725033 cites W2028865808 @default.
- W26725033 cites W2031638785 @default.
- W26725033 cites W2036145359 @default.
- W26725033 cites W2041596966 @default.
- W26725033 cites W2050780271 @default.
- W26725033 cites W2050990799 @default.
- W26725033 cites W2052481058 @default.
- W26725033 cites W2056345867 @default.
- W26725033 cites W2058525499 @default.
- W26725033 cites W2059718340 @default.
- W26725033 cites W2060936143 @default.
- W26725033 cites W2062911876 @default.
- W26725033 cites W2070020183 @default.
- W26725033 cites W2075462259 @default.
- W26725033 cites W2077335595 @default.
- W26725033 cites W2080172907 @default.
- W26725033 cites W2082598604 @default.
- W26725033 cites W2086466939 @default.
- W26725033 cites W2091973234 @default.
- W26725033 cites W2092031806 @default.
- W26725033 cites W2093760124 @default.
- W26725033 cites W2093775648 @default.
- W26725033 cites W2094209999 @default.
- W26725033 cites W2094662671 @default.
- W26725033 cites W2096545136 @default.
- W26725033 cites W2096549698 @default.
- W26725033 cites W2097691755 @default.
- W26725033 cites W2098789317 @default.
- W26725033 cites W2101608919 @default.
- W26725033 cites W2111526990 @default.
- W26725033 cites W2113777563 @default.
- W26725033 cites W2121653560 @default.
- W26725033 cites W2121701488 @default.
- W26725033 cites W2125641208 @default.
- W26725033 cites W2128066858 @default.
- W26725033 cites W2128158076 @default.
- W26725033 cites W2128544595 @default.
- W26725033 cites W2132482151 @default.
- W26725033 cites W2139216939 @default.
- W26725033 cites W2155531790 @default.
- W26725033 cites W2166293188 @default.
- W26725033 cites W2178048599 @default.
- W26725033 cites W2178785249 @default.
- W26725033 cites W2188489292 @default.
- W26725033 cites W2320201929 @default.
- W26725033 cites W2321665777 @default.
- W26725033 cites W3009909194 @default.
- W26725033 cites W3162373860 @default.
- W26725033 cites W31828899 @default.
- W26725033 cites W344669638 @default.
- W26725033 cites W2016389713 @default.
- W26725033 doi "https://doi.org/10.1016/b978-0-12-396455-7.00004-2" @default.
- W26725033 hasPublicationYear "2013" @default.
- W26725033 type Work @default.
- W26725033 sameAs 26725033 @default.
- W26725033 citedByCount "2" @default.
- W26725033 countsByYear W267250332014 @default.
- W26725033 countsByYear W267250332018 @default.
- W26725033 crossrefType "book-chapter" @default.
- W26725033 hasAuthorship W26725033A5047709858 @default.
- W26725033 hasConcept C111337013 @default.
- W26725033 hasConcept C121332964 @default.
- W26725033 hasConcept C121864883 @default.
- W26725033 hasConcept C125118446 @default.
- W26725033 hasConcept C18231593 @default.
- W26725033 hasConcept C185544564 @default.
- W26725033 hasConcept C2778755073 @default.
- W26725033 hasConcept C62520636 @default.