Matches in SemOpenAlex for { <https://semopenalex.org/work/W2693014738> ?p ?o ?g. }
- W2693014738 endingPage "2672" @default.
- W2693014738 startingPage "2665" @default.
- W2693014738 abstract "In this work, we prove that the topological Hausdorff dimension of critical percolation cluster (CPC) in two dimensions is equal to DtH=Drb+1=7/4, where Drb is the Hausdorff dimension of the set of red bonds. Hence, the CPC is infinitely ramified. We also argue that the mapping from the Euclidean metric to the geodesic metric on the CPC is governed by the Hausdorff dimension of the cluster skeleton Dsc=DH/dℓ>dmin, where DH, dℓ, and dmin are the Hausdorff and the connectivity (chemical) dimensions of the CPC and the fractal dimension of the minimum path, respectively. Then we introduce the notion of the topological connectivity dimension dtℓ. This allows us to establish the exact upper and lower bounds for the connectivity dimension dℓ of the CPC in d=2. The upper and lower bounds for some other dimension numbers were established using the relations between dimension numbers. Narrow ranges defined by these bounds are much smaller than the error bars of numerical estimates reported in literature. Accordingly, the exact values of some dimension numbers are conjectured." @default.
- W2693014738 created "2017-06-30" @default.
- W2693014738 creator A5010233958 @default.
- W2693014738 creator A5044063917 @default.
- W2693014738 creator A5054891707 @default.
- W2693014738 date "2017-09-01" @default.
- W2693014738 modified "2023-10-11" @default.
- W2693014738 title "Topological Hausdorff dimension and geodesic metric of critical percolation cluster in two dimensions" @default.
- W2693014738 cites W1964304516 @default.
- W2693014738 cites W1965525783 @default.
- W2693014738 cites W1966809889 @default.
- W2693014738 cites W1994813959 @default.
- W2693014738 cites W1999598670 @default.
- W2693014738 cites W2000130054 @default.
- W2693014738 cites W2004794182 @default.
- W2693014738 cites W2013317618 @default.
- W2693014738 cites W2016685373 @default.
- W2693014738 cites W2016792150 @default.
- W2693014738 cites W2022833978 @default.
- W2693014738 cites W2024008630 @default.
- W2693014738 cites W2025377795 @default.
- W2693014738 cites W2029597464 @default.
- W2693014738 cites W2031343032 @default.
- W2693014738 cites W2037594497 @default.
- W2693014738 cites W2039535646 @default.
- W2693014738 cites W2041740704 @default.
- W2693014738 cites W2043281145 @default.
- W2693014738 cites W2044958944 @default.
- W2693014738 cites W2070930064 @default.
- W2693014738 cites W2071917875 @default.
- W2693014738 cites W2072004926 @default.
- W2693014738 cites W2073485865 @default.
- W2693014738 cites W2077366357 @default.
- W2693014738 cites W2079531922 @default.
- W2693014738 cites W2084826148 @default.
- W2693014738 cites W2085377061 @default.
- W2693014738 cites W2085798080 @default.
- W2693014738 cites W2093306669 @default.
- W2693014738 cites W2094411530 @default.
- W2693014738 cites W2099626568 @default.
- W2693014738 cites W2100376401 @default.
- W2693014738 cites W2106883211 @default.
- W2693014738 cites W2119724044 @default.
- W2693014738 cites W2142748866 @default.
- W2693014738 cites W2152542847 @default.
- W2693014738 cites W2152994069 @default.
- W2693014738 cites W2156895775 @default.
- W2693014738 cites W2165422922 @default.
- W2693014738 cites W2166795106 @default.
- W2693014738 cites W2333597439 @default.
- W2693014738 cites W2465752070 @default.
- W2693014738 cites W2964287832 @default.
- W2693014738 cites W3098683765 @default.
- W2693014738 cites W3099648472 @default.
- W2693014738 cites W3103433673 @default.
- W2693014738 cites W3105474372 @default.
- W2693014738 doi "https://doi.org/10.1016/j.physleta.2017.06.028" @default.
- W2693014738 hasPublicationYear "2017" @default.
- W2693014738 type Work @default.
- W2693014738 sameAs 2693014738 @default.
- W2693014738 citedByCount "16" @default.
- W2693014738 countsByYear W26930147382018 @default.
- W2693014738 countsByYear W26930147382019 @default.
- W2693014738 countsByYear W26930147382020 @default.
- W2693014738 countsByYear W26930147382021 @default.
- W2693014738 countsByYear W26930147382022 @default.
- W2693014738 countsByYear W26930147382023 @default.
- W2693014738 crossrefType "journal-article" @default.
- W2693014738 hasAuthorship W2693014738A5010233958 @default.
- W2693014738 hasAuthorship W2693014738A5044063917 @default.
- W2693014738 hasAuthorship W2693014738A5054891707 @default.
- W2693014738 hasConcept C101597101 @default.
- W2693014738 hasConcept C114614502 @default.
- W2693014738 hasConcept C115311070 @default.
- W2693014738 hasConcept C121332964 @default.
- W2693014738 hasConcept C129782007 @default.
- W2693014738 hasConcept C134306372 @default.
- W2693014738 hasConcept C141898687 @default.
- W2693014738 hasConcept C162324750 @default.
- W2693014738 hasConcept C162494671 @default.
- W2693014738 hasConcept C165818556 @default.
- W2693014738 hasConcept C169760540 @default.
- W2693014738 hasConcept C176217482 @default.
- W2693014738 hasConcept C184720557 @default.
- W2693014738 hasConcept C194198291 @default.
- W2693014738 hasConcept C21547014 @default.
- W2693014738 hasConcept C23707678 @default.
- W2693014738 hasConcept C2524010 @default.
- W2693014738 hasConcept C26546657 @default.
- W2693014738 hasConcept C2780457167 @default.
- W2693014738 hasConcept C28235433 @default.
- W2693014738 hasConcept C33676613 @default.
- W2693014738 hasConcept C33923547 @default.
- W2693014738 hasConcept C40636538 @default.
- W2693014738 hasConcept C60396315 @default.
- W2693014738 hasConcept C66844729 @default.
- W2693014738 hasConcept C80661125 @default.
- W2693014738 hasConcept C86803240 @default.