Matches in SemOpenAlex for { <https://semopenalex.org/work/W2703670218> ?p ?o ?g. }
- W2703670218 abstract "There is a growing trend for ever larger wireless sensor networks (WSNs) consisting of thousands or tens of thousands of sensor nodes (e.g., [91, 79]). We believe this trend will continue and thus scalability plays a crucial role in all protocols and mechanisms for WSNs. Another trend in many modern WSN applications is the time sensitivity to information from sensors to sinks. In particular, WSNs are a central part of the vision of cyber-physical systems and as these are basically closed-loop systems many WSN applications will have to operate under stringent timing requirements. Hence, it is crucial to develop algorithms that minimize the worst-case delay in WSNs. In addition, almost all WSNs consist of battery-powered nodes, and thus energy-efficiency clearly remains another premier goal in order to keep network lifetime high. This dissertation presents and evaluates designs for WSNs using multiple sinks to achieve high lifetime and low delay. Firstly, we investigate random and deterministic node placement strategies for large-scale and time-sensitive WSNs. In particular, we focus on tiling-based deterministic node placement strategies and analyze their effects on coverage, lifetime, and delay performance under both exact placement and stochastically disturbed placement. Next, we present sink placement strategies, which constitutes the main contributions of this dissertation. Static sinks will be placed and mobile sinks will be given a trajectory. A proper sink placement strategy can improve the performance of a WSN significantly. In general, the optimal sink placement with lifetime maximization is an NP-hard problem. The problem is even harder if delay is taken into account. In order to achieve both lifetime and delay goals, we focus on the problem of placing multiple (static) sinks such that the maximum worst-case delay is minimized while keeping the energy consumption as low as possible. Different target networks may need a corresponding sink placement strategy under differing levels of apriori assumptions. Therefore, we first develop an algorithm based on the Genetic Algorithm (GA) paradigm for known sensor nodes' locations. For a network where global information is not feasible we introduce a self-organized sink placement (SOSP) strategy. While GA-based sink placement achieves a near-optimal solution, SOSP provides a good sink placement strategy with a lower communication overhead. How to plan the trajectories of many mobile sinks in very large WSNs in order to simultaneously achieve lifetime and delay goals had not been treated so far in the literature. Therefore, we delve into this difficult problem and propose a heuristic framework using multiple orbits for the sinks' trajectories. The framework is designed based on geometric arguments to achieve both, high lifetime and low delay. In simulations, we compare two different instances of our framework, one conceived based on a load-balancing argument and one based on a distance minimization argument, with a set of different competitors spanning from statically placed sinks to battery-state aware strategies. We find our heuristics outperform the competitors in both, lifetime and delay. Furthermore, and probably even more important, the heuristic, while keeping its good delay and lifetime performance, scales well with an increasing number of sinks. In brief, the goal of this dissertation is to show that placing nodes and sinks in conventional WSNs as well as planning trajectories in mobility enabled WSNs carefully really pays off for large-scale and time-sensitive WSNs." @default.
- W2703670218 created "2017-06-30" @default.
- W2703670218 creator A5048539227 @default.
- W2703670218 date "2013-01-01" @default.
- W2703670218 modified "2023-09-27" @default.
- W2703670218 title "Design Problems in Large-Scale, Time-Sensitive WSNs" @default.
- W2703670218 cites W1483834292 @default.
- W2703670218 cites W1497256448 @default.
- W2703670218 cites W1511269965 @default.
- W2703670218 cites W1541256735 @default.
- W2703670218 cites W1541262242 @default.
- W2703670218 cites W1546203712 @default.
- W2703670218 cites W1578085187 @default.
- W2703670218 cites W1602684539 @default.
- W2703670218 cites W1604406970 @default.
- W2703670218 cites W178795275 @default.
- W2703670218 cites W1982071711 @default.
- W2703670218 cites W1983197449 @default.
- W2703670218 cites W1987061561 @default.
- W2703670218 cites W1992246527 @default.
- W2703670218 cites W2001132459 @default.
- W2703670218 cites W2007748641 @default.
- W2703670218 cites W2020643009 @default.
- W2703670218 cites W2024725140 @default.
- W2703670218 cites W2027875165 @default.
- W2703670218 cites W2060885783 @default.
- W2703670218 cites W2073583237 @default.
- W2703670218 cites W2075910004 @default.
- W2703670218 cites W2084220481 @default.
- W2703670218 cites W2091342305 @default.
- W2703670218 cites W2091936226 @default.
- W2703670218 cites W2092604954 @default.
- W2703670218 cites W2094658339 @default.
- W2703670218 cites W2095954496 @default.
- W2703670218 cites W2100430744 @default.
- W2703670218 cites W2100796177 @default.
- W2703670218 cites W2101963262 @default.
- W2703670218 cites W2102604933 @default.
- W2703670218 cites W2103981365 @default.
- W2703670218 cites W2104102707 @default.
- W2703670218 cites W2105710533 @default.
- W2703670218 cites W2106335692 @default.
- W2703670218 cites W2106356883 @default.
- W2703670218 cites W2107905431 @default.
- W2703670218 cites W2108756442 @default.
- W2703670218 cites W2109785846 @default.
- W2703670218 cites W2113411424 @default.
- W2703670218 cites W2114861171 @default.
- W2703670218 cites W2115763491 @default.
- W2703670218 cites W2117768029 @default.
- W2703670218 cites W2121358742 @default.
- W2703670218 cites W2122545369 @default.
- W2703670218 cites W2122804302 @default.
- W2703670218 cites W2122856759 @default.
- W2703670218 cites W2124804629 @default.
- W2703670218 cites W2125555950 @default.
- W2703670218 cites W2126409482 @default.
- W2703670218 cites W2127497269 @default.
- W2703670218 cites W2128376458 @default.
- W2703670218 cites W2131791946 @default.
- W2703670218 cites W2133304743 @default.
- W2703670218 cites W2136928898 @default.
- W2703670218 cites W2137486085 @default.
- W2703670218 cites W2139120132 @default.
- W2703670218 cites W2144246237 @default.
- W2703670218 cites W2146460236 @default.
- W2703670218 cites W2147206873 @default.
- W2703670218 cites W2148251644 @default.
- W2703670218 cites W2149472588 @default.
- W2703670218 cites W2150312692 @default.
- W2703670218 cites W2151678896 @default.
- W2703670218 cites W2152154505 @default.
- W2703670218 cites W2152246564 @default.
- W2703670218 cites W2153233077 @default.
- W2703670218 cites W2153422903 @default.
- W2703670218 cites W2154023174 @default.
- W2703670218 cites W2157090751 @default.
- W2703670218 cites W2158416522 @default.
- W2703670218 cites W2165939633 @default.
- W2703670218 cites W2167659223 @default.
- W2703670218 cites W2168612429 @default.
- W2703670218 cites W2170469173 @default.
- W2703670218 cites W2170680261 @default.
- W2703670218 cites W2170906797 @default.
- W2703670218 cites W2283973566 @default.
- W2703670218 cites W2319974422 @default.
- W2703670218 cites W2333442752 @default.
- W2703670218 cites W2611804663 @default.
- W2703670218 cites W3023540311 @default.
- W2703670218 cites W3143224565 @default.
- W2703670218 cites W2031677324 @default.
- W2703670218 cites W2773382186 @default.
- W2703670218 hasPublicationYear "2013" @default.
- W2703670218 type Work @default.
- W2703670218 sameAs 2703670218 @default.
- W2703670218 citedByCount "0" @default.
- W2703670218 crossrefType "journal-article" @default.
- W2703670218 hasAuthorship W2703670218A5048539227 @default.
- W2703670218 hasConcept C119599485 @default.
- W2703670218 hasConcept C120314980 @default.