Matches in SemOpenAlex for { <https://semopenalex.org/work/W2712794940> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2712794940 endingPage "334" @default.
- W2712794940 startingPage "323" @default.
- W2712794940 abstract "Game-based learning environments create rich learning experiences that are both effective and engaging. Recent years have seen growing interest in data-driven techniques for tutorial planning, which dynamically personalize learning experiences by providing hints, feedback, and problem scenarios at run-time. In game-based learning environments, tutorial planners are designed to adapt gameplay events in order to achieve multiple objectives, such as enhancing student learning or student engagement, which may be complementary or competing aims. In this paper, we introduce a multi-objective reinforcement learning framework for inducing game-based tutorial planners that balance between improving learning and engagement in game-based learning environments. We investigate a model-based, linear-scalarized multi-policy algorithm, Convex Hull Value Iteration, to induce a tutorial planner from a corpus of student interactions with a game-based learning environment for middle school science education. Results indicate that multi-objective reinforcement learning creates policies that are more effective at balancing multiple reward sources than single-objective techniques. A qualitative analysis of select policies and multi-objective preference vectors shows how a multi-objective reinforcement learning framework shapes the selection of tutorial actions during students’ game-based learning experiences to effectively achieve targeted learning and engagement outcomes." @default.
- W2712794940 created "2017-06-30" @default.
- W2712794940 creator A5074470380 @default.
- W2712794940 creator A5078153822 @default.
- W2712794940 creator A5085880418 @default.
- W2712794940 date "2017-01-01" @default.
- W2712794940 modified "2023-09-27" @default.
- W2712794940 title "Balancing Learning and Engagement in Game-Based Learning Environments with Multi-objective Reinforcement Learning" @default.
- W2712794940 cites W1518318201 @default.
- W2712794940 cites W1982011423 @default.
- W2712794940 cites W2012039745 @default.
- W2712794940 cites W2017647470 @default.
- W2712794940 cites W2055836102 @default.
- W2712794940 cites W2099460238 @default.
- W2712794940 cites W2105715011 @default.
- W2712794940 cites W2123516968 @default.
- W2712794940 cites W2127076710 @default.
- W2712794940 cites W2136757566 @default.
- W2712794940 cites W2141481921 @default.
- W2712794940 cites W2188328586 @default.
- W2712794940 cites W2294691030 @default.
- W2712794940 cites W3103262232 @default.
- W2712794940 doi "https://doi.org/10.1007/978-3-319-61425-0_27" @default.
- W2712794940 hasPublicationYear "2017" @default.
- W2712794940 type Work @default.
- W2712794940 sameAs 2712794940 @default.
- W2712794940 citedByCount "9" @default.
- W2712794940 countsByYear W27127949402018 @default.
- W2712794940 countsByYear W27127949402019 @default.
- W2712794940 countsByYear W27127949402020 @default.
- W2712794940 countsByYear W27127949402021 @default.
- W2712794940 countsByYear W27127949402022 @default.
- W2712794940 countsByYear W27127949402023 @default.
- W2712794940 crossrefType "book-chapter" @default.
- W2712794940 hasAuthorship W2712794940A5074470380 @default.
- W2712794940 hasAuthorship W2712794940A5078153822 @default.
- W2712794940 hasAuthorship W2712794940A5085880418 @default.
- W2712794940 hasConcept C107457646 @default.
- W2712794940 hasConcept C145420912 @default.
- W2712794940 hasConcept C154945302 @default.
- W2712794940 hasConcept C162324750 @default.
- W2712794940 hasConcept C175444787 @default.
- W2712794940 hasConcept C181204326 @default.
- W2712794940 hasConcept C2776999362 @default.
- W2712794940 hasConcept C2778365744 @default.
- W2712794940 hasConcept C2781249084 @default.
- W2712794940 hasConcept C33923547 @default.
- W2712794940 hasConcept C41008148 @default.
- W2712794940 hasConcept C77967617 @default.
- W2712794940 hasConcept C97541855 @default.
- W2712794940 hasConceptScore W2712794940C107457646 @default.
- W2712794940 hasConceptScore W2712794940C145420912 @default.
- W2712794940 hasConceptScore W2712794940C154945302 @default.
- W2712794940 hasConceptScore W2712794940C162324750 @default.
- W2712794940 hasConceptScore W2712794940C175444787 @default.
- W2712794940 hasConceptScore W2712794940C181204326 @default.
- W2712794940 hasConceptScore W2712794940C2776999362 @default.
- W2712794940 hasConceptScore W2712794940C2778365744 @default.
- W2712794940 hasConceptScore W2712794940C2781249084 @default.
- W2712794940 hasConceptScore W2712794940C33923547 @default.
- W2712794940 hasConceptScore W2712794940C41008148 @default.
- W2712794940 hasConceptScore W2712794940C77967617 @default.
- W2712794940 hasConceptScore W2712794940C97541855 @default.
- W2712794940 hasLocation W27127949401 @default.
- W2712794940 hasOpenAccess W2712794940 @default.
- W2712794940 hasPrimaryLocation W27127949401 @default.
- W2712794940 hasRelatedWork W2129297552 @default.
- W2712794940 hasRelatedWork W2608055108 @default.
- W2712794940 hasRelatedWork W2896912032 @default.
- W2712794940 hasRelatedWork W2954428433 @default.
- W2712794940 hasRelatedWork W3034808231 @default.
- W2712794940 hasRelatedWork W3099643187 @default.
- W2712794940 hasRelatedWork W3146401513 @default.
- W2712794940 hasRelatedWork W4287024651 @default.
- W2712794940 hasRelatedWork W4289419964 @default.
- W2712794940 hasRelatedWork W4321637150 @default.
- W2712794940 isParatext "false" @default.
- W2712794940 isRetracted "false" @default.
- W2712794940 magId "2712794940" @default.
- W2712794940 workType "book-chapter" @default.