Matches in SemOpenAlex for { <https://semopenalex.org/work/W2714335099> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2714335099 abstract "In the sensor network blind calibration problem, the gains and offsets of sensors are estimated from noisy observations of unknown underlying signals. This is in general a non-identifiable problem, unless restrictive assumptions on the signal subspace or sensor observations are imposed. To overcome these assumptions, we propose a dynamic Bayesian nonparametric model. We show that if the unknown underlying signals follow the first-order auto-regressive process, then the sensor gains and offsets are identifiable. Furthermore, our model allows sensors to form clusters, where each cluster observes the same underlying signal. The clusters are however not known a priori, and are learned through the sensor data. We present a block Gibbs sampling inference method based on the forward filtering backward sampling algorithm. Simulation results suggest that our approach can estimate the sensor gains and offsets with good accuracy, and performs better than methods that first perform clustering and then blind calibration." @default.
- W2714335099 created "2017-06-30" @default.
- W2714335099 creator A5018463611 @default.
- W2714335099 creator A5040006297 @default.
- W2714335099 creator A5046850399 @default.
- W2714335099 date "2017-03-01" @default.
- W2714335099 modified "2023-09-23" @default.
- W2714335099 title "A dynamic Bayesian nonparametric model for blind calibration of sensor networks" @default.
- W2714335099 cites W2007641398 @default.
- W2714335099 cites W2049683924 @default.
- W2714335099 cites W2071079847 @default.
- W2714335099 cites W2071975411 @default.
- W2714335099 cites W2074719413 @default.
- W2714335099 cites W2109646819 @default.
- W2714335099 cites W2115245044 @default.
- W2714335099 cites W2118036030 @default.
- W2714335099 cites W2138863982 @default.
- W2714335099 cites W2146414958 @default.
- W2714335099 cites W2152139894 @default.
- W2714335099 cites W2165232124 @default.
- W2714335099 cites W2171092999 @default.
- W2714335099 cites W2462796524 @default.
- W2714335099 cites W3104490327 @default.
- W2714335099 doi "https://doi.org/10.1109/icassp.2017.7952949" @default.
- W2714335099 hasPublicationYear "2017" @default.
- W2714335099 type Work @default.
- W2714335099 sameAs 2714335099 @default.
- W2714335099 citedByCount "5" @default.
- W2714335099 countsByYear W27143350992018 @default.
- W2714335099 countsByYear W27143350992019 @default.
- W2714335099 countsByYear W27143350992021 @default.
- W2714335099 crossrefType "proceedings-article" @default.
- W2714335099 hasAuthorship W2714335099A5018463611 @default.
- W2714335099 hasAuthorship W2714335099A5040006297 @default.
- W2714335099 hasAuthorship W2714335099A5046850399 @default.
- W2714335099 hasBestOaLocation W27143350992 @default.
- W2714335099 hasConcept C102366305 @default.
- W2714335099 hasConcept C105795698 @default.
- W2714335099 hasConcept C107673813 @default.
- W2714335099 hasConcept C111472728 @default.
- W2714335099 hasConcept C11413529 @default.
- W2714335099 hasConcept C138885662 @default.
- W2714335099 hasConcept C140779682 @default.
- W2714335099 hasConcept C154945302 @default.
- W2714335099 hasConcept C158424031 @default.
- W2714335099 hasConcept C160234255 @default.
- W2714335099 hasConcept C165838908 @default.
- W2714335099 hasConcept C24590314 @default.
- W2714335099 hasConcept C2776214188 @default.
- W2714335099 hasConcept C31258907 @default.
- W2714335099 hasConcept C32834561 @default.
- W2714335099 hasConcept C33923547 @default.
- W2714335099 hasConcept C41008148 @default.
- W2714335099 hasConcept C73555534 @default.
- W2714335099 hasConcept C75553542 @default.
- W2714335099 hasConcept C76155785 @default.
- W2714335099 hasConcept C94915269 @default.
- W2714335099 hasConceptScore W2714335099C102366305 @default.
- W2714335099 hasConceptScore W2714335099C105795698 @default.
- W2714335099 hasConceptScore W2714335099C107673813 @default.
- W2714335099 hasConceptScore W2714335099C111472728 @default.
- W2714335099 hasConceptScore W2714335099C11413529 @default.
- W2714335099 hasConceptScore W2714335099C138885662 @default.
- W2714335099 hasConceptScore W2714335099C140779682 @default.
- W2714335099 hasConceptScore W2714335099C154945302 @default.
- W2714335099 hasConceptScore W2714335099C158424031 @default.
- W2714335099 hasConceptScore W2714335099C160234255 @default.
- W2714335099 hasConceptScore W2714335099C165838908 @default.
- W2714335099 hasConceptScore W2714335099C24590314 @default.
- W2714335099 hasConceptScore W2714335099C2776214188 @default.
- W2714335099 hasConceptScore W2714335099C31258907 @default.
- W2714335099 hasConceptScore W2714335099C32834561 @default.
- W2714335099 hasConceptScore W2714335099C33923547 @default.
- W2714335099 hasConceptScore W2714335099C41008148 @default.
- W2714335099 hasConceptScore W2714335099C73555534 @default.
- W2714335099 hasConceptScore W2714335099C75553542 @default.
- W2714335099 hasConceptScore W2714335099C76155785 @default.
- W2714335099 hasConceptScore W2714335099C94915269 @default.
- W2714335099 hasLocation W27143350991 @default.
- W2714335099 hasLocation W27143350992 @default.
- W2714335099 hasOpenAccess W2714335099 @default.
- W2714335099 hasPrimaryLocation W27143350991 @default.
- W2714335099 hasRelatedWork W1505352366 @default.
- W2714335099 hasRelatedWork W1597455262 @default.
- W2714335099 hasRelatedWork W2141720728 @default.
- W2714335099 hasRelatedWork W2151635921 @default.
- W2714335099 hasRelatedWork W2407517896 @default.
- W2714335099 hasRelatedWork W2743551752 @default.
- W2714335099 hasRelatedWork W2753218748 @default.
- W2714335099 hasRelatedWork W2774409638 @default.
- W2714335099 hasRelatedWork W3121231293 @default.
- W2714335099 hasRelatedWork W4300539063 @default.
- W2714335099 isParatext "false" @default.
- W2714335099 isRetracted "false" @default.
- W2714335099 magId "2714335099" @default.
- W2714335099 workType "article" @default.