Matches in SemOpenAlex for { <https://semopenalex.org/work/W2718384077> ?p ?o ?g. }
- W2718384077 endingPage "629" @default.
- W2718384077 startingPage "619" @default.
- W2718384077 abstract "This paper generalizes the well-known covariance intersection algorithm for distributed estimation and information fusion of random vectors. Our focus will be on partially correlated random vectors. This is motivated by the restriction of the standard covariance intersection algorithm, which treats all random vectors with arbitrary cross correlations and the restriction of the classical Kalman filter, which requires complete knowledge of the cross correlations. We first give a result to characterize the conservatism of the standard covariance intersection algorithm. We then generalize the covariance intersection algorithm to two random vectors with a given correlation coefficient bound and show in what sense the resulting covariance bound is tight. Finally, we generalize the notion of correlation coefficient bound to multiple random vectors and provide a covariance intersection algorithm for this general case. Our results will make the already popular covariance intersection more applicable and more accurate for distributed estimation and information fusion problems." @default.
- W2718384077 created "2017-06-30" @default.
- W2718384077 creator A5004392249 @default.
- W2718384077 creator A5065677770 @default.
- W2718384077 creator A5089353857 @default.
- W2718384077 date "2018-03-01" @default.
- W2718384077 modified "2023-10-12" @default.
- W2718384077 title "Covariance Intersection for Partially Correlated Random Vectors" @default.
- W2718384077 cites W1980674786 @default.
- W2718384077 cites W1984609538 @default.
- W2718384077 cites W2005850412 @default.
- W2718384077 cites W2006832107 @default.
- W2718384077 cites W2023267838 @default.
- W2718384077 cites W2026478216 @default.
- W2718384077 cites W2038420319 @default.
- W2718384077 cites W2040100938 @default.
- W2718384077 cites W2041414778 @default.
- W2718384077 cites W2042074386 @default.
- W2718384077 cites W2046473141 @default.
- W2718384077 cites W2060733544 @default.
- W2718384077 cites W2064183516 @default.
- W2718384077 cites W2091739459 @default.
- W2718384077 cites W2098853626 @default.
- W2718384077 cites W2103054970 @default.
- W2718384077 cites W2116564195 @default.
- W2718384077 cites W2118525590 @default.
- W2718384077 cites W2118550318 @default.
- W2718384077 cites W2138376863 @default.
- W2718384077 cites W2139396625 @default.
- W2718384077 cites W2143833711 @default.
- W2718384077 cites W2144859729 @default.
- W2718384077 cites W2148234182 @default.
- W2718384077 cites W2150394675 @default.
- W2718384077 cites W2158122241 @default.
- W2718384077 cites W2158449659 @default.
- W2718384077 cites W2160397644 @default.
- W2718384077 cites W2334643484 @default.
- W2718384077 cites W4237072884 @default.
- W2718384077 doi "https://doi.org/10.1109/tac.2017.2718243" @default.
- W2718384077 hasPublicationYear "2018" @default.
- W2718384077 type Work @default.
- W2718384077 sameAs 2718384077 @default.
- W2718384077 citedByCount "37" @default.
- W2718384077 countsByYear W27183840772017 @default.
- W2718384077 countsByYear W27183840772018 @default.
- W2718384077 countsByYear W27183840772019 @default.
- W2718384077 countsByYear W27183840772020 @default.
- W2718384077 countsByYear W27183840772021 @default.
- W2718384077 countsByYear W27183840772022 @default.
- W2718384077 countsByYear W27183840772023 @default.
- W2718384077 crossrefType "journal-article" @default.
- W2718384077 hasAuthorship W2718384077A5004392249 @default.
- W2718384077 hasAuthorship W2718384077A5065677770 @default.
- W2718384077 hasAuthorship W2718384077A5089353857 @default.
- W2718384077 hasConcept C105795698 @default.
- W2718384077 hasConcept C122123141 @default.
- W2718384077 hasConcept C126372606 @default.
- W2718384077 hasConcept C127413603 @default.
- W2718384077 hasConcept C129759605 @default.
- W2718384077 hasConcept C137250428 @default.
- W2718384077 hasConcept C138405894 @default.
- W2718384077 hasConcept C146978453 @default.
- W2718384077 hasConcept C178650346 @default.
- W2718384077 hasConcept C182514268 @default.
- W2718384077 hasConcept C28826006 @default.
- W2718384077 hasConcept C33923547 @default.
- W2718384077 hasConcept C64543145 @default.
- W2718384077 hasConcept C83042196 @default.
- W2718384077 hasConcept C98991287 @default.
- W2718384077 hasConceptScore W2718384077C105795698 @default.
- W2718384077 hasConceptScore W2718384077C122123141 @default.
- W2718384077 hasConceptScore W2718384077C126372606 @default.
- W2718384077 hasConceptScore W2718384077C127413603 @default.
- W2718384077 hasConceptScore W2718384077C129759605 @default.
- W2718384077 hasConceptScore W2718384077C137250428 @default.
- W2718384077 hasConceptScore W2718384077C138405894 @default.
- W2718384077 hasConceptScore W2718384077C146978453 @default.
- W2718384077 hasConceptScore W2718384077C178650346 @default.
- W2718384077 hasConceptScore W2718384077C182514268 @default.
- W2718384077 hasConceptScore W2718384077C28826006 @default.
- W2718384077 hasConceptScore W2718384077C33923547 @default.
- W2718384077 hasConceptScore W2718384077C64543145 @default.
- W2718384077 hasConceptScore W2718384077C83042196 @default.
- W2718384077 hasConceptScore W2718384077C98991287 @default.
- W2718384077 hasFunder F4320321001 @default.
- W2718384077 hasIssue "3" @default.
- W2718384077 hasLocation W27183840771 @default.
- W2718384077 hasOpenAccess W2718384077 @default.
- W2718384077 hasPrimaryLocation W27183840771 @default.
- W2718384077 hasRelatedWork W2023205960 @default.
- W2718384077 hasRelatedWork W2148213881 @default.
- W2718384077 hasRelatedWork W2603687605 @default.
- W2718384077 hasRelatedWork W2718384077 @default.
- W2718384077 hasRelatedWork W2768630603 @default.
- W2718384077 hasRelatedWork W2789192249 @default.
- W2718384077 hasRelatedWork W3012316820 @default.
- W2718384077 hasRelatedWork W3114282518 @default.
- W2718384077 hasRelatedWork W4281554704 @default.