Matches in SemOpenAlex for { <https://semopenalex.org/work/W2723921359> ?p ?o ?g. }
- W2723921359 endingPage "1030" @default.
- W2723921359 startingPage "1017" @default.
- W2723921359 abstract "Pore forming toxins (PFTs) are virulent proteins whose primary goal is to lyse target cells by unregulated pore formation. Molecular dynamics simulations can potentially provide molecular insights on the properties of the pore complex as well as the underlying pathways for pore formation. In this manuscript we compare both coarse-grained (MARTINI force-field) and all-atom simulations, and comment on the accuracy of the MARTINI coarse-grained method for simulating these large membrane protein pore complexes. We report 20 $$mu hbox {s}$$ long coarse-grained MARTINI simulations of prototypical pores from two different classes of pore forming toxins (PFTs) in lipid membranes - Cytolysin A (ClyA), which is an example of an $$alpha $$ toxin, and $$alpha $$ -hemolysin (AHL) which is an example of a $$beta $$ toxin. We compare and contrast structural attributes such as the root mean square deviation (RMSD) histograms and the inner pore radius profiles from the MARTINI simulations with all-atom simulations. RMSD histograms sampled by the MARTINI simulations are about a factor of 2 larger, and the radius profiles show that the transmembrane domains of both ClyA and AHL pores undergo significant distortions, when compared with the all-atom simulations. In addition to the fully inserted transmembrane pores, membrane-inserted proteo-lipid ClyA arcs show large shape distortions with a tendency to close in the MARTINI simulations. While this phenomenon could be biologically plausible given the fact that $$alpha $$ -toxins can form pores of varying sizes, the additional flexibility is probably due to weaker inter-protomer interactions which are modulated by the elastic dynamic network in the MARTINI force-field. We conclude that there is further scope for refining inter-protomer contacts and perhaps membrane-protein interactions in the MARTINI coarse-grained framework. A robust coarse-grained force-field will enable one to reliably carry out mesoscopic simulations which are required to understand protomer oligomerization, pore formation and leakage. SYNOPSIS Multimeric and non-selective transmembrane pores formed by bacterial toxins on the host cell cause cell death, and hence elucidating membrane-protein interactions accurately in molecular models is important for unraveling biological phenomena at molecular resolution. A comparison of coarse-grained (MARTINI) and all-atom simulations for two prototypical pores in lipid membranes show that the transmembrane domains of both pores undergo significant distortions in MARTINI but not in all-atom simulations. Additionally, transmembrane proteo-lipid arcs show large shape distortions with a tendency to close in the MARTINI simulations. This indicates that both inter-protein and membrane-protein interactions in the MARTINI framework must be refined further." @default.
- W2723921359 created "2017-06-30" @default.
- W2723921359 creator A5011980056 @default.
- W2723921359 creator A5012457461 @default.
- W2723921359 creator A5032119214 @default.
- W2723921359 creator A5033901931 @default.
- W2723921359 creator A5063962990 @default.
- W2723921359 date "2017-06-19" @default.
- W2723921359 modified "2023-09-25" @default.
- W2723921359 title "Comparison of coarse-grained (MARTINI) and atomistic molecular dynamics simulations of $$alpha $$ α and $$beta $$ β toxin nanopores in lipid membranes" @default.
- W2723921359 cites W1964651856 @default.
- W2723921359 cites W1965984853 @default.
- W2723921359 cites W1982898268 @default.
- W2723921359 cites W1983955924 @default.
- W2723921359 cites W1989007585 @default.
- W2723921359 cites W1992143635 @default.
- W2723921359 cites W1992542802 @default.
- W2723921359 cites W1995715655 @default.
- W2723921359 cites W1996915747 @default.
- W2723921359 cites W1997136952 @default.
- W2723921359 cites W2002380095 @default.
- W2723921359 cites W2004437533 @default.
- W2723921359 cites W2008708467 @default.
- W2723921359 cites W2025117402 @default.
- W2723921359 cites W2030683115 @default.
- W2723921359 cites W2037312364 @default.
- W2723921359 cites W2042527516 @default.
- W2723921359 cites W2049980665 @default.
- W2723921359 cites W2050119515 @default.
- W2723921359 cites W2051864856 @default.
- W2723921359 cites W2052069688 @default.
- W2723921359 cites W2057477511 @default.
- W2723921359 cites W2061350166 @default.
- W2723921359 cites W2062609628 @default.
- W2723921359 cites W2073592717 @default.
- W2723921359 cites W2075777353 @default.
- W2723921359 cites W2080500233 @default.
- W2723921359 cites W2081693079 @default.
- W2723921359 cites W2081724315 @default.
- W2723921359 cites W2094095233 @default.
- W2723921359 cites W2098055048 @default.
- W2723921359 cites W2111632603 @default.
- W2723921359 cites W2119267663 @default.
- W2723921359 cites W2126383912 @default.
- W2723921359 cites W2140111815 @default.
- W2723921359 cites W2142532813 @default.
- W2723921359 cites W2155201844 @default.
- W2723921359 cites W2160544821 @default.
- W2723921359 cites W2314292783 @default.
- W2723921359 cites W2333875502 @default.
- W2723921359 cites W2412650387 @default.
- W2723921359 cites W2435066257 @default.
- W2723921359 cites W2525593987 @default.
- W2723921359 cites W2543120616 @default.
- W2723921359 doi "https://doi.org/10.1007/s12039-017-1316-0" @default.
- W2723921359 hasPublicationYear "2017" @default.
- W2723921359 type Work @default.
- W2723921359 sameAs 2723921359 @default.
- W2723921359 citedByCount "14" @default.
- W2723921359 countsByYear W27239213592017 @default.
- W2723921359 countsByYear W27239213592019 @default.
- W2723921359 countsByYear W27239213592020 @default.
- W2723921359 countsByYear W27239213592021 @default.
- W2723921359 crossrefType "journal-article" @default.
- W2723921359 hasAuthorship W2723921359A5011980056 @default.
- W2723921359 hasAuthorship W2723921359A5012457461 @default.
- W2723921359 hasAuthorship W2723921359A5032119214 @default.
- W2723921359 hasAuthorship W2723921359A5033901931 @default.
- W2723921359 hasAuthorship W2723921359A5063962990 @default.
- W2723921359 hasBestOaLocation W27239213592 @default.
- W2723921359 hasConcept C104317684 @default.
- W2723921359 hasConcept C121332964 @default.
- W2723921359 hasConcept C12554922 @default.
- W2723921359 hasConcept C141795571 @default.
- W2723921359 hasConcept C147597530 @default.
- W2723921359 hasConcept C159467904 @default.
- W2723921359 hasConcept C170493617 @default.
- W2723921359 hasConcept C171250308 @default.
- W2723921359 hasConcept C174921431 @default.
- W2723921359 hasConcept C178635117 @default.
- W2723921359 hasConcept C185592680 @default.
- W2723921359 hasConcept C192562407 @default.
- W2723921359 hasConcept C24530287 @default.
- W2723921359 hasConcept C2777367657 @default.
- W2723921359 hasConcept C38652104 @default.
- W2723921359 hasConcept C39944091 @default.
- W2723921359 hasConcept C41008148 @default.
- W2723921359 hasConcept C41625074 @default.
- W2723921359 hasConcept C55493867 @default.
- W2723921359 hasConcept C59593255 @default.
- W2723921359 hasConcept C60987743 @default.
- W2723921359 hasConcept C62520636 @default.
- W2723921359 hasConcept C71907059 @default.
- W2723921359 hasConcept C8010536 @default.
- W2723921359 hasConcept C80595800 @default.
- W2723921359 hasConcept C86803240 @default.
- W2723921359 hasConcept C9043230 @default.
- W2723921359 hasConceptScore W2723921359C104317684 @default.