Matches in SemOpenAlex for { <https://semopenalex.org/work/W2724729237> ?p ?o ?g. }
- W2724729237 endingPage "674" @default.
- W2724729237 startingPage "660" @default.
- W2724729237 abstract "Rapid whole-brain dynamic Magnetic Resonance Imaging (MRI) is of particular interest in Blood Oxygen Level Dependent (BOLD) functional MRI (fMRI). Faster acquisitions with higher temporal sampling of the BOLD time-course provide several advantages including increased sensitivity in detecting functional activation, the possibility of filtering out physiological noise for improving temporal SNR, and freezing out head motion. Generally, faster acquisitions require undersampling of the data which results in aliasing artifacts in the object domain. A recently developed low-rank (L) plus sparse (S) matrix decomposition model (L+S) is one of the methods that has been introduced to reconstruct images from undersampled dynamic MRI data. The L+S approach assumes that the dynamic MRI data, represented as a space-time matrix M, is a linear superposition of L and S components, where L represents highly spatially and temporally correlated elements, such as the image background, while S captures dynamic information that is sparse in an appropriate transform domain. This suggests that L+S might be suited for undersampled task or slow event-related fMRI acquisitions because the periodic nature of the BOLD signal is sparse in the temporal Fourier transform domain and slowly varying low-rank brain background signals, such as physiological noise and drift, will be predominantly low-rank. In this work, as a proof of concept, we exploit the L+S method for accelerating block-design fMRI using a 3D stack of spirals (SoS) acquisition where undersampling is performed in the kz−t domain. We examined the feasibility of the L+S method to accurately separate temporally correlated brain background information in the L component while capturing periodic BOLD signals in the S component. We present results acquired in control human volunteers at 3 T for both retrospective and prospectively acquired fMRI data for a visual activation block-design task. We show that a SoS fMRI acquisition with an acceleration of four and L+S reconstruction can achieve a brain coverage of 40 slices at 2 mm isotropic resolution and 64 x 64 matrix size every 500 ms." @default.
- W2724729237 created "2017-07-14" @default.
- W2724729237 creator A5027914537 @default.
- W2724729237 creator A5035750851 @default.
- W2724729237 creator A5089542665 @default.
- W2724729237 date "2017-08-01" @default.
- W2724729237 modified "2023-10-12" @default.
- W2724729237 title "Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction" @default.
- W2724729237 cites W1558728293 @default.
- W2724729237 cites W1599938249 @default.
- W2724729237 cites W1902888488 @default.
- W2724729237 cites W1970948570 @default.
- W2724729237 cites W1971571088 @default.
- W2724729237 cites W1972479033 @default.
- W2724729237 cites W1983923103 @default.
- W2724729237 cites W2008257035 @default.
- W2724729237 cites W2010564728 @default.
- W2724729237 cites W2012403501 @default.
- W2724729237 cites W2016121318 @default.
- W2724729237 cites W2027492915 @default.
- W2724729237 cites W2030514429 @default.
- W2724729237 cites W2030736218 @default.
- W2724729237 cites W2044760379 @default.
- W2724729237 cites W2053759320 @default.
- W2724729237 cites W2059982399 @default.
- W2724729237 cites W2066494844 @default.
- W2724729237 cites W2066737159 @default.
- W2724729237 cites W2071714163 @default.
- W2724729237 cites W2071868699 @default.
- W2724729237 cites W2090198804 @default.
- W2724729237 cites W2093198155 @default.
- W2724729237 cites W2097544878 @default.
- W2724729237 cites W2101675075 @default.
- W2724729237 cites W2103972604 @default.
- W2724729237 cites W2111298039 @default.
- W2724729237 cites W2111388536 @default.
- W2724729237 cites W2114809469 @default.
- W2724729237 cites W2115221929 @default.
- W2724729237 cites W2115706991 @default.
- W2724729237 cites W2117621792 @default.
- W2724729237 cites W2123346066 @default.
- W2724729237 cites W2124187669 @default.
- W2724729237 cites W2124410669 @default.
- W2724729237 cites W2124988070 @default.
- W2724729237 cites W2129554183 @default.
- W2724729237 cites W2132122471 @default.
- W2724729237 cites W2137526583 @default.
- W2724729237 cites W2141941237 @default.
- W2724729237 cites W2145962650 @default.
- W2724729237 cites W2151354228 @default.
- W2724729237 cites W2156739854 @default.
- W2724729237 cites W2168903001 @default.
- W2724729237 cites W2253495968 @default.
- W2724729237 cites W2312870252 @default.
- W2724729237 cites W2724729237 @default.
- W2724729237 cites W4235806146 @default.
- W2724729237 cites W4249760698 @default.
- W2724729237 doi "https://doi.org/10.1016/j.neuroimage.2017.06.004" @default.
- W2724729237 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28684333" @default.
- W2724729237 hasPublicationYear "2017" @default.
- W2724729237 type Work @default.
- W2724729237 sameAs 2724729237 @default.
- W2724729237 citedByCount "14" @default.
- W2724729237 countsByYear W27247292372017 @default.
- W2724729237 countsByYear W27247292372018 @default.
- W2724729237 countsByYear W27247292372019 @default.
- W2724729237 countsByYear W27247292372020 @default.
- W2724729237 countsByYear W27247292372021 @default.
- W2724729237 countsByYear W27247292372022 @default.
- W2724729237 countsByYear W27247292372023 @default.
- W2724729237 crossrefType "journal-article" @default.
- W2724729237 hasAuthorship W2724729237A5027914537 @default.
- W2724729237 hasAuthorship W2724729237A5035750851 @default.
- W2724729237 hasAuthorship W2724729237A5089542665 @default.
- W2724729237 hasConcept C102519508 @default.
- W2724729237 hasConcept C106131492 @default.
- W2724729237 hasConcept C115961682 @default.
- W2724729237 hasConcept C119666444 @default.
- W2724729237 hasConcept C121332964 @default.
- W2724729237 hasConcept C124851039 @default.
- W2724729237 hasConcept C134306372 @default.
- W2724729237 hasConcept C136536468 @default.
- W2724729237 hasConcept C153180895 @default.
- W2724729237 hasConcept C154945302 @default.
- W2724729237 hasConcept C169760540 @default.
- W2724729237 hasConcept C174128100 @default.
- W2724729237 hasConcept C197413143 @default.
- W2724729237 hasConcept C25023664 @default.
- W2724729237 hasConcept C2779226451 @default.
- W2724729237 hasConcept C31972630 @default.
- W2724729237 hasConcept C33923547 @default.
- W2724729237 hasConcept C4069607 @default.
- W2724729237 hasConcept C41008148 @default.
- W2724729237 hasConcept C62520636 @default.
- W2724729237 hasConcept C86803240 @default.
- W2724729237 hasConcept C90199385 @default.
- W2724729237 hasConcept C99498987 @default.
- W2724729237 hasConceptScore W2724729237C102519508 @default.