Matches in SemOpenAlex for { <https://semopenalex.org/work/W2724793896> ?p ?o ?g. }
- W2724793896 endingPage "594" @default.
- W2724793896 startingPage "574" @default.
- W2724793896 abstract "Genetic improvement uses automated search to find improved versions of existing software. Genetic improvement has previously been concerned with improving a system with respect to all possible usage scenarios. In this paper, we show how genetic improvement can also be used to achieve specialisation to a specific set of usage scenarios. We use genetic improvement to evolve faster versions of a C++ program, a Boolean satisfiability solver called MiniSAT, specialising it for three different applications, each with their own characteristics. Our specialised solvers achieve between 4 and 36 percent execution time improvement, which is commensurate with efficiency gains achievable using human expert optimisation for the general solver. We also use genetic improvement to evolve faster versions of an image processing tool called ImageMagick, utilising code from GraphicsMagick, another image processing tool which was forked from it. We specialise the format conversion functionality to greyscale images and colour images only. Our specialised versions achieve up to 3 percent execution time improvement." @default.
- W2724793896 created "2017-07-14" @default.
- W2724793896 creator A5000019783 @default.
- W2724793896 creator A5053531565 @default.
- W2724793896 creator A5065281209 @default.
- W2724793896 creator A5083601969 @default.
- W2724793896 date "2018-06-01" @default.
- W2724793896 modified "2023-09-26" @default.
- W2724793896 title "Specialising Software for Different Downstream Applications Using Genetic Improvement and Code Transplantation" @default.
- W2724793896 cites W1491008813 @default.
- W2724793896 cites W1518705996 @default.
- W2724793896 cites W1531687740 @default.
- W2724793896 cites W1596462940 @default.
- W2724793896 cites W1949943063 @default.
- W2724793896 cites W1965891547 @default.
- W2724793896 cites W1966100330 @default.
- W2724793896 cites W1977321274 @default.
- W2724793896 cites W1979866694 @default.
- W2724793896 cites W1979922504 @default.
- W2724793896 cites W1982703446 @default.
- W2724793896 cites W1984074188 @default.
- W2724793896 cites W1986056191 @default.
- W2724793896 cites W1996081324 @default.
- W2724793896 cites W1996374694 @default.
- W2724793896 cites W2001936191 @default.
- W2724793896 cites W2014938705 @default.
- W2724793896 cites W2017290598 @default.
- W2724793896 cites W2019313821 @default.
- W2724793896 cites W2020768474 @default.
- W2724793896 cites W2025791343 @default.
- W2724793896 cites W2031525781 @default.
- W2724793896 cites W2039257851 @default.
- W2724793896 cites W2041713059 @default.
- W2724793896 cites W2043501467 @default.
- W2724793896 cites W2046631444 @default.
- W2724793896 cites W2056842119 @default.
- W2724793896 cites W2062918259 @default.
- W2724793896 cites W2063206077 @default.
- W2724793896 cites W2069265488 @default.
- W2724793896 cites W2071182716 @default.
- W2724793896 cites W2072719763 @default.
- W2724793896 cites W2075699551 @default.
- W2724793896 cites W2079664326 @default.
- W2724793896 cites W2081479337 @default.
- W2724793896 cites W2084627971 @default.
- W2724793896 cites W2089925494 @default.
- W2724793896 cites W2092382400 @default.
- W2724793896 cites W2102076216 @default.
- W2724793896 cites W2102791214 @default.
- W2724793896 cites W2106263419 @default.
- W2724793896 cites W2106683494 @default.
- W2724793896 cites W2110337982 @default.
- W2724793896 cites W2114869486 @default.
- W2724793896 cites W2122796178 @default.
- W2724793896 cites W2126210726 @default.
- W2724793896 cites W2128967738 @default.
- W2724793896 cites W2133376191 @default.
- W2724793896 cites W2139657973 @default.
- W2724793896 cites W2143960295 @default.
- W2724793896 cites W2144778294 @default.
- W2724793896 cites W2145373440 @default.
- W2724793896 cites W2158586961 @default.
- W2724793896 cites W2167113173 @default.
- W2724793896 cites W2171119203 @default.
- W2724793896 cites W2212999407 @default.
- W2724793896 cites W2295811209 @default.
- W2724793896 cites W2305591663 @default.
- W2724793896 cites W2338541268 @default.
- W2724793896 cites W2475137645 @default.
- W2724793896 cites W2559566240 @default.
- W2724793896 cites W264743668 @default.
- W2724793896 cites W3005044106 @default.
- W2724793896 cites W32282251 @default.
- W2724793896 cites W38372507 @default.
- W2724793896 cites W4230919050 @default.
- W2724793896 cites W4231241365 @default.
- W2724793896 cites W4245822332 @default.
- W2724793896 cites W4247184692 @default.
- W2724793896 doi "https://doi.org/10.1109/tse.2017.2702606" @default.
- W2724793896 hasPublicationYear "2018" @default.
- W2724793896 type Work @default.
- W2724793896 sameAs 2724793896 @default.
- W2724793896 citedByCount "28" @default.
- W2724793896 countsByYear W27247938962017 @default.
- W2724793896 countsByYear W27247938962018 @default.
- W2724793896 countsByYear W27247938962019 @default.
- W2724793896 countsByYear W27247938962020 @default.
- W2724793896 countsByYear W27247938962021 @default.
- W2724793896 countsByYear W27247938962022 @default.
- W2724793896 countsByYear W27247938962023 @default.
- W2724793896 crossrefType "journal-article" @default.
- W2724793896 hasAuthorship W2724793896A5000019783 @default.
- W2724793896 hasAuthorship W2724793896A5053531565 @default.
- W2724793896 hasAuthorship W2724793896A5065281209 @default.
- W2724793896 hasAuthorship W2724793896A5083601969 @default.
- W2724793896 hasBestOaLocation W27247938962 @default.
- W2724793896 hasConcept C113775141 @default.
- W2724793896 hasConcept C115903868 @default.