Matches in SemOpenAlex for { <https://semopenalex.org/work/W272489241> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W272489241 abstract "About the Authors. Preface. 1. Introduction to Piezoelectric Energy Harvesting. 1.1 Vibration-Based Energy Harvesting Using Piezoelectric Transduction. 1.2 An Examples of a Piezoelectric Energy Harvesting System. 1.3 Mathematical Modeling of Piezoelectric Energy Harvesters. 1.4 Summary of the Theory of Linear Piezoelectricity. 1.5 Outline of the Book. 2. Base Excitation Problem for Cantilevered Structures and Correction of the Lumped-Parameter Electromechanical Model. 2.1 Base Excitation Problem for the Transverse Vibrations. 2.2 Correction of the Lumped-Parameter Base Excitation Model for Transverse Vibrations. 2.3 Experimental Case Studies for Validation of the Correction Factor. 2.4 Base Excitation Problem for Longitudinal Vibrations and Correction of its Lumped-Parameter Model. 2.5 Correction Factor in the Electromechanically Coupled Lumped-Parameter Equations and a Theoretical Case Study. 2.6 Summary. 2.7 Chapter Notes. 3. Analytical Distributed-Parameter Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters. 3.1 Fundamentals of the Electromechanically Coupled Distributed-Parameter Model. 3.2 Series Connection of the Piezoceramic Layers. 3.3 Parallel Connection of Piezoceramic Layers. 3.4 Equivalent Representation of the Series and the Parallel Connection Cases. 3.5 Single-Mode Electromechanical Equations for Modal Excitations. 3.6 Multi-mode and Single-Mode Electromechanical FRFs. 3.7 Theoretical Case Study. 3.8 Summary. 3.9 Chapter Notes. 4. Experimental Validation of the Analytical Solution for Bimorph Configurations. 4.1 PZT-5H Bimorph Cantilever without a Tip Mass. 4.2 PZT-5H Bimorph Cantilever with a Tip Mass. 4.3 PZT-5A Bimorph Cantilever. 4.4 Summary. 4.5 Chapter Notes. 5. Dimensionless Equations, Asymptotic Analyses, and Closed-Form Relations for Parameter Identification and Optimization. 5.1 Dimensionless Representation of the Single-Mode Electromechanical FRFs. 5.2 Asymptotic Analyses and Resonance Frequencies. 5.3 Identification of Mechanical Damping. 5.4 Identification of the Optimum Electrical Load for Resonance Excitation. 5.5 Intersection of the Voltage Asymptotes and a Simple Technique for the Experimental Identification of the Optimum Load Resistance. 5.6 Vibration Attenuation Amplification from the Short-Circuit to Open-Circuit Conditions. 5.7 Experimental Validation for a PZT-5H Bimorph Cantilever. 5.8 Summary. 5.9 Chapter Notes. 6. Approximate Analytical Distributed-Parameter Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters. 6.1 Unimorph Piezoelectric Energy Harvester Configuration. 6.2 Electromechanical Euler-Bernoulli Model with Axial Deformations. 6.3 Electromechanical Rayleigh Model with Axial Deformations. 6.4 Electromechanical Timoshenko Model with Axial Deformations. 6.5 Modeling of Symmetric Configurations. 6.6 Presence of a Tip Mass in the Euler-Bernoulli, Rayleigh, and Timoshenko Models. 6.7 Comments on the Kinematically Admissible Trial Functions. 6.8 Experimental Validation of the Assumed-Modes Solution for a Bimorph Cantilever. 6.9 Experimental Validation for a Two-Segment Cantilever. 6.10 Summary. 6.11 Chapter Notes. 7. Modeling of Piezoelectric Energy Harvesting for Various Forms of Dynamic Loading. 7.1 Governing Electromechanical Equations. 7.2 Periodic Excitation. 7.3 White Noise Excitation. 7.4 Excitation Due to Moving Loads. 7.5 Local Strain Fluctuations on Large Structures. 7.6 Numerical Solution for General Transient Excitation. 7.7 Case Studies. 7.8 Summary. 7.9 Chapter Notes. 8. Modeling and Exploiting Mechanical Nonlinearities in Piezoelectric Energy Harvesting. 8.1 Perturbation Solution of the Piezoelectric Energy Harvesting Problem: the Method of Multiple Scales. 8.2 Monostable Duffing Oscillator with Piezoelectric Coupling. 8.3 Bistable Duffing Oscillator with Piezoelectric Coupling: the Piezomagnetoelastic Energy Harvester. 8.4 Experimental Performance Results of the Bistable Peizomagnetoelastic Energy Harvester. 8.5 A Bistable Plate for Piezoelectric Energy Harvesting. 8.6 Summary. 8.7 Chapter Notes. 9. Piezoelectric Energy Harvesting from Aeroelastic Vibrations. 9.1 A Lumped-Parameter Piezoaeroelastic Energy Harvester Model for Harmonic Response. 9.2 Experimental Validations of the Lumped-Parameter Model at the Flutter Boundary. 9.3 Utilization of System Nonlinearities in Piezoaeroelastic Energy Harvesting. 9.4 A Distributed-Parameter Piezoaeroelastic Model for Harmonic Response: Assumed-Modes Formulation. 9.5 Time-Domain and Frequency-Domain Piezoaeroelastic Formulations with Finite-Element Modeling. 9.6 Theoretical Case Study for Airflow Excitation of a Cantilevered Plate. 9.7 Summary. 9.8 Chapter Notes. 10. Effects of Material Constants and Mechanical Damping on Power Generation. 10.1 Effective Parameters of Various Soft Ceramics and Single Crystals. 10.2 Theoretical Case Study for Performance Comparison of Soft Ceramics and Single Crystals. 10.3 Effective Parameters of Typical Soft and Hard Ceramics and Single Crystals. 10.4 Theoretical Case Study for Performance Comparison of Soft and Hard Ceramics and Single Crystals. 10.5 Experimental Demonstration for PZT-5A and PZT-5H Cantilevers. 10.6 Summary. 10.7 Chapter Notes. 11. A Brief Review of the Literature of Piezoelectric Energy Harvesting Circuits. 11.1 AC-DC Rectification and Analysis of the Rectified Output. 11.2 Two-Stage Energy Harvesting Circuits: DC-DC Conversion for Impedance Matching. 11.3 Synchronized Switching on Inductor for Piezoelectric Energy Harvesting. 11.4 Summary. 11.5 Chapter Notes. Appendix A. Piezoelectric Constitutive Equations. Appendix B. Modeling of the Excitation Force in Support Motion Problems of Beams and Bars. Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. Appendix D. Strain Nodes of a Uniform Thin Beam for Cantilevered and Other Boundary Conditions. Appendix E. Numerical Data for PZT-5A and PZT-5H Piezoceramics. Appendix F. Constitutive Equations for an Isotropic Substructure. Appendix G. Essential Boundary Conditions for Cantilevered Beams. Appendix H. Electromechanical Lagrange Equations Based on the Extended Hamilton s Principle. Index." @default.
- W272489241 created "2016-06-24" @default.
- W272489241 creator A5007305559 @default.
- W272489241 creator A5053950377 @default.
- W272489241 date "2011-03-29" @default.
- W272489241 modified "2023-10-03" @default.
- W272489241 title "Piezoelectric Energy Harvesting" @default.
- W272489241 doi "https://doi.org/10.1002/9781119991151" @default.
- W272489241 hasPublicationYear "2011" @default.
- W272489241 type Work @default.
- W272489241 sameAs 272489241 @default.
- W272489241 citedByCount "987" @default.
- W272489241 countsByYear W2724892412012 @default.
- W272489241 countsByYear W2724892412013 @default.
- W272489241 countsByYear W2724892412014 @default.
- W272489241 countsByYear W2724892412015 @default.
- W272489241 countsByYear W2724892412016 @default.
- W272489241 countsByYear W2724892412017 @default.
- W272489241 countsByYear W2724892412018 @default.
- W272489241 countsByYear W2724892412019 @default.
- W272489241 countsByYear W2724892412020 @default.
- W272489241 countsByYear W2724892412021 @default.
- W272489241 countsByYear W2724892412022 @default.
- W272489241 countsByYear W2724892412023 @default.
- W272489241 crossrefType "monograph" @default.
- W272489241 hasAuthorship W272489241A5007305559 @default.
- W272489241 hasAuthorship W272489241A5053950377 @default.
- W272489241 hasConcept C100082104 @default.
- W272489241 hasConcept C101518730 @default.
- W272489241 hasConcept C121332964 @default.
- W272489241 hasConcept C127413603 @default.
- W272489241 hasConcept C141354745 @default.
- W272489241 hasConcept C186370098 @default.
- W272489241 hasConcept C198394728 @default.
- W272489241 hasConcept C24890656 @default.
- W272489241 hasConcept C2778393539 @default.
- W272489241 hasConcept C62520636 @default.
- W272489241 hasConcept C66938386 @default.
- W272489241 hasConceptScore W272489241C100082104 @default.
- W272489241 hasConceptScore W272489241C101518730 @default.
- W272489241 hasConceptScore W272489241C121332964 @default.
- W272489241 hasConceptScore W272489241C127413603 @default.
- W272489241 hasConceptScore W272489241C141354745 @default.
- W272489241 hasConceptScore W272489241C186370098 @default.
- W272489241 hasConceptScore W272489241C198394728 @default.
- W272489241 hasConceptScore W272489241C24890656 @default.
- W272489241 hasConceptScore W272489241C2778393539 @default.
- W272489241 hasConceptScore W272489241C62520636 @default.
- W272489241 hasConceptScore W272489241C66938386 @default.
- W272489241 hasLocation W2724892411 @default.
- W272489241 hasOpenAccess W272489241 @default.
- W272489241 hasPrimaryLocation W2724892411 @default.
- W272489241 hasRelatedWork W1603864151 @default.
- W272489241 hasRelatedWork W1978783007 @default.
- W272489241 hasRelatedWork W2038538085 @default.
- W272489241 hasRelatedWork W2169342510 @default.
- W272489241 hasRelatedWork W2300519988 @default.
- W272489241 hasRelatedWork W2350756422 @default.
- W272489241 hasRelatedWork W2592916852 @default.
- W272489241 hasRelatedWork W2742570286 @default.
- W272489241 hasRelatedWork W2753149152 @default.
- W272489241 hasRelatedWork W3036249939 @default.
- W272489241 isParatext "false" @default.
- W272489241 isRetracted "false" @default.
- W272489241 magId "272489241" @default.
- W272489241 workType "book" @default.