Matches in SemOpenAlex for { <https://semopenalex.org/work/W2725171863> ?p ?o ?g. }
- W2725171863 endingPage "1512" @default.
- W2725171863 startingPage "1502" @default.
- W2725171863 abstract "The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can now be realized through very fast data acquisition, processing, and reconstruction algorithms. If we use DPC STEM for atomic-resolution imaging using a sub-angstrom size electron probe, it has been shown that we can directly observe the atomic electric field inside atoms within crystals and even inside single atoms, the field between the atomic nucleus and the surrounding electron cloud, which possesses information about the atomic species, local chemical bonding and charge redistribution between bonded atoms. This possibility may open an alternative way for directly visualizing atoms and nanostructures, that is, seeing atoms as an entity of electromagnetic fields that reflect the intra- and interatomic electronic structures. In this Account, the current status of aberration-corrected DPC STEM is highlighted, along with some applications in real material and device studies." @default.
- W2725171863 created "2017-07-14" @default.
- W2725171863 creator A5007703129 @default.
- W2725171863 creator A5021926088 @default.
- W2725171863 creator A5052365998 @default.
- W2725171863 creator A5055622569 @default.
- W2725171863 creator A5072456410 @default.
- W2725171863 creator A5073225819 @default.
- W2725171863 creator A5076675370 @default.
- W2725171863 date "2017-07-05" @default.
- W2725171863 modified "2023-10-15" @default.
- W2725171863 title "Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy" @default.
- W2725171863 cites W1460790986 @default.
- W2725171863 cites W1876297499 @default.
- W2725171863 cites W1964683291 @default.
- W2725171863 cites W1965294328 @default.
- W2725171863 cites W1968240415 @default.
- W2725171863 cites W1972081918 @default.
- W2725171863 cites W1973202445 @default.
- W2725171863 cites W1975534419 @default.
- W2725171863 cites W1985063847 @default.
- W2725171863 cites W1987836318 @default.
- W2725171863 cites W1989125670 @default.
- W2725171863 cites W1990284773 @default.
- W2725171863 cites W1991372337 @default.
- W2725171863 cites W1991395163 @default.
- W2725171863 cites W1997468426 @default.
- W2725171863 cites W1998921763 @default.
- W2725171863 cites W2001579200 @default.
- W2725171863 cites W2010501464 @default.
- W2725171863 cites W2023265118 @default.
- W2725171863 cites W2027357424 @default.
- W2725171863 cites W2028404493 @default.
- W2725171863 cites W2030456585 @default.
- W2725171863 cites W2035800517 @default.
- W2725171863 cites W2048353977 @default.
- W2725171863 cites W2060639799 @default.
- W2725171863 cites W2061238046 @default.
- W2725171863 cites W2066681415 @default.
- W2725171863 cites W2075070889 @default.
- W2725171863 cites W2077489619 @default.
- W2725171863 cites W2082510544 @default.
- W2725171863 cites W2085791077 @default.
- W2725171863 cites W2091624999 @default.
- W2725171863 cites W2103132078 @default.
- W2725171863 cites W2104187985 @default.
- W2725171863 cites W2107737793 @default.
- W2725171863 cites W2114407360 @default.
- W2725171863 cites W2121671453 @default.
- W2725171863 cites W2128934324 @default.
- W2725171863 cites W2160400279 @default.
- W2725171863 cites W2165734732 @default.
- W2725171863 cites W2168406111 @default.
- W2725171863 cites W2230031442 @default.
- W2725171863 cites W2275710659 @default.
- W2725171863 cites W2319854161 @default.
- W2725171863 cites W2326733244 @default.
- W2725171863 cites W2327023351 @default.
- W2725171863 cites W2328865627 @default.
- W2725171863 cites W2355838024 @default.
- W2725171863 cites W2412899689 @default.
- W2725171863 cites W2507564904 @default.
- W2725171863 cites W2538249853 @default.
- W2725171863 cites W2583968225 @default.
- W2725171863 cites W2617913071 @default.
- W2725171863 cites W647284886 @default.
- W2725171863 doi "https://doi.org/10.1021/acs.accounts.7b00123" @default.
- W2725171863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28677953" @default.
- W2725171863 hasPublicationYear "2017" @default.
- W2725171863 type Work @default.
- W2725171863 sameAs 2725171863 @default.
- W2725171863 citedByCount "59" @default.
- W2725171863 countsByYear W27251718632018 @default.
- W2725171863 countsByYear W27251718632019 @default.
- W2725171863 countsByYear W27251718632020 @default.
- W2725171863 countsByYear W27251718632021 @default.
- W2725171863 countsByYear W27251718632022 @default.
- W2725171863 countsByYear W27251718632023 @default.
- W2725171863 crossrefType "journal-article" @default.
- W2725171863 hasAuthorship W2725171863A5007703129 @default.
- W2725171863 hasAuthorship W2725171863A5021926088 @default.
- W2725171863 hasAuthorship W2725171863A5052365998 @default.
- W2725171863 hasAuthorship W2725171863A5055622569 @default.
- W2725171863 hasAuthorship W2725171863A5072456410 @default.
- W2725171863 hasAuthorship W2725171863A5073225819 @default.
- W2725171863 hasAuthorship W2725171863A5076675370 @default.
- W2725171863 hasConcept C120665830 @default.
- W2725171863 hasConcept C121332964 @default.
- W2725171863 hasConcept C146088050 @default.
- W2725171863 hasConcept C147080431 @default.
- W2725171863 hasConcept C147120987 @default.
- W2725171863 hasConcept C192562407 @default.
- W2725171863 hasConcept C193016168 @default.
- W2725171863 hasConcept C49040817 @default.
- W2725171863 hasConcept C53120450 @default.
- W2725171863 hasConcept C62520636 @default.
- W2725171863 hasConcept C75806775 @default.
- W2725171863 hasConcept C94915269 @default.