Matches in SemOpenAlex for { <https://semopenalex.org/work/W2725237741> ?p ?o ?g. }
- W2725237741 endingPage "5034" @default.
- W2725237741 startingPage "5019" @default.
- W2725237741 abstract "Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a popular approach for diagnosing various neurodegenerative diseases, including Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). Current studies mainly construct the FC networks between grey matter (GM) regions of the brain based on temporal co-variations of the blood oxygenation level-dependent (BOLD) signals, which reflects the synchronized neural activities. However, it was rarely investigated whether the FC detected within the white matter (WM) could provide useful information for diagnosis. Motivated by the recently proposed functional correlation tensors (FCT) computed from RS-fMRI and used to characterize the structured pattern of local FC in the WM, we propose in this article a novel MCI classification method based on the information conveyed by both the FC between the GM regions and that within the WM regions. Specifically, in the WM, the tensor-based metrics (e.g., fractional anisotropy [FA], similar to the metric calculated based on diffusion tensor imaging [DTI]) are first calculated based on the FCT and then summarized along each of the major WM fiber tracts connecting each pair of the brain GM regions. This could capture the functional information in the WM, in a similar network structure as the FC network constructed for the GM, based only on the same RS-fMRI data. Moreover, a sliding window approach is further used to partition the voxel-wise BOLD signal into multiple short overlapping segments. Then, both the FC and FCT between each pair of the brain regions can be calculated based on the BOLD signal segments in the GM and WM, respectively. In such a way, our method can generate dynamic FC and dynamic FCT to better capture functional information in both GM and WM and further integrate them together by using our developed feature extraction, selection, and ensemble learning algorithms. The experimental results verify that the dynamic FCT can provide valuable functional information in the WM; by combining it with the dynamic FC in the GM, the diagnosis accuracy for MCI subjects can be significantly improved even using RS-fMRI data alone. Hum Brain Mapp 38:5019-5034, 2017. © 2017 Wiley Periodicals, Inc." @default.
- W2725237741 created "2017-07-14" @default.
- W2725237741 creator A5000937401 @default.
- W2725237741 creator A5006447298 @default.
- W2725237741 creator A5008205289 @default.
- W2725237741 creator A5010949964 @default.
- W2725237741 creator A5038461226 @default.
- W2725237741 creator A5050852420 @default.
- W2725237741 date "2017-06-30" @default.
- W2725237741 modified "2023-10-15" @default.
- W2725237741 title "Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification" @default.
- W2725237741 cites W113304814 @default.
- W2725237741 cites W1197925356 @default.
- W2725237741 cites W1434475215 @default.
- W2725237741 cites W1760829075 @default.
- W2725237741 cites W1763957826 @default.
- W2725237741 cites W1806166822 @default.
- W2725237741 cites W1872034074 @default.
- W2725237741 cites W1901624583 @default.
- W2725237741 cites W1944134607 @default.
- W2725237741 cites W1944724818 @default.
- W2725237741 cites W1963996846 @default.
- W2725237741 cites W1976623182 @default.
- W2725237741 cites W1982881439 @default.
- W2725237741 cites W1990134753 @default.
- W2725237741 cites W1994101925 @default.
- W2725237741 cites W1995571867 @default.
- W2725237741 cites W1999816351 @default.
- W2725237741 cites W2002529139 @default.
- W2725237741 cites W2003851329 @default.
- W2725237741 cites W2011320316 @default.
- W2725237741 cites W2011402106 @default.
- W2725237741 cites W2020076547 @default.
- W2725237741 cites W2020617938 @default.
- W2725237741 cites W2027630121 @default.
- W2725237741 cites W2028748733 @default.
- W2725237741 cites W2030902100 @default.
- W2725237741 cites W2038899746 @default.
- W2725237741 cites W2039728861 @default.
- W2725237741 cites W2040412343 @default.
- W2725237741 cites W2048107129 @default.
- W2725237741 cites W2052742260 @default.
- W2725237741 cites W2055158855 @default.
- W2725237741 cites W2058046532 @default.
- W2725237741 cites W2058187841 @default.
- W2725237741 cites W2060899536 @default.
- W2725237741 cites W2062229853 @default.
- W2725237741 cites W2062788471 @default.
- W2725237741 cites W2067825653 @default.
- W2725237741 cites W2069045060 @default.
- W2725237741 cites W2069762774 @default.
- W2725237741 cites W2070949043 @default.
- W2725237741 cites W2073887580 @default.
- W2725237741 cites W2077598284 @default.
- W2725237741 cites W2090267913 @default.
- W2725237741 cites W2092594036 @default.
- W2725237741 cites W2108988045 @default.
- W2725237741 cites W2113708991 @default.
- W2725237741 cites W2121428135 @default.
- W2725237741 cites W2122175830 @default.
- W2725237741 cites W2122320288 @default.
- W2725237741 cites W2124141514 @default.
- W2725237741 cites W2126927216 @default.
- W2725237741 cites W2127889169 @default.
- W2725237741 cites W2129812935 @default.
- W2725237741 cites W2132175842 @default.
- W2725237741 cites W2136435696 @default.
- W2725237741 cites W2143629049 @default.
- W2725237741 cites W2149664588 @default.
- W2725237741 cites W2151920318 @default.
- W2725237741 cites W2153635508 @default.
- W2725237741 cites W2155164847 @default.
- W2725237741 cites W2167822639 @default.
- W2725237741 cites W2171380313 @default.
- W2725237741 cites W2172458890 @default.
- W2725237741 cites W224781702 @default.
- W2725237741 cites W2272252788 @default.
- W2725237741 cites W2288326636 @default.
- W2725237741 cites W2304527985 @default.
- W2725237741 cites W2328176404 @default.
- W2725237741 cites W2338065876 @default.
- W2725237741 cites W2342502232 @default.
- W2725237741 cites W2345678177 @default.
- W2725237741 cites W2411460890 @default.
- W2725237741 cites W2422365436 @default.
- W2725237741 cites W2490556356 @default.
- W2725237741 cites W2502203196 @default.
- W2725237741 cites W2518298328 @default.
- W2725237741 cites W2528944770 @default.
- W2725237741 cites W2551492216 @default.
- W2725237741 cites W2559664870 @default.
- W2725237741 cites W2583114732 @default.
- W2725237741 cites W2592320152 @default.
- W2725237741 cites W2969438869 @default.
- W2725237741 cites W639190785 @default.
- W2725237741 doi "https://doi.org/10.1002/hbm.23711" @default.
- W2725237741 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5593789" @default.
- W2725237741 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28665045" @default.