Matches in SemOpenAlex for { <https://semopenalex.org/work/W2725249225> ?p ?o ?g. }
- W2725249225 abstract "This paper presents a novel nonlinear regression model for estimating heterogeneous treatment effects from observational data, geared specifically towards situations with small effect sizes, heterogeneous effects, and strong confounding. Standard nonlinear regression models, which may work quite well for prediction, have two notable weaknesses when used to estimate heterogeneous treatment effects. First, they can yield badly biased estimates of treatment effects when fit to data with strong confounding. The Bayesian causal forest model presented in this paper avoids this problem by directly incorporating an estimate of the propensity function in the specification of the response model, implicitly inducing a covariate-dependent prior on the regression function. Second, standard approaches to response surface modeling do not provide adequate control over the strength of regularization over effect heterogeneity. The Bayesian causal forest model permits treatment effect heterogeneity to be regularized separately from the prognostic effect of control variables, making it possible to informatively shrink to homogeneity. We illustrate these benefits via the reanalysis of an observational study assessing the causal effects of smoking on medical expenditures as well as extensive simulation studies." @default.
- W2725249225 created "2017-07-14" @default.
- W2725249225 creator A5008199122 @default.
- W2725249225 creator A5033884286 @default.
- W2725249225 creator A5051287606 @default.
- W2725249225 date "2017-06-29" @default.
- W2725249225 modified "2023-09-27" @default.
- W2725249225 title "Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects" @default.
- W2725249225 cites W1536497620 @default.
- W2725249225 cites W1554043754 @default.
- W2725249225 cites W1618214481 @default.
- W2725249225 cites W162576350 @default.
- W2725249225 cites W1731081199 @default.
- W2725249225 cites W1969115978 @default.
- W2725249225 cites W1981178452 @default.
- W2725249225 cites W1997656864 @default.
- W2725249225 cites W2006290997 @default.
- W2725249225 cites W2012224392 @default.
- W2725249225 cites W2013718670 @default.
- W2725249225 cites W2028040032 @default.
- W2725249225 cites W2044599416 @default.
- W2725249225 cites W2048470090 @default.
- W2725249225 cites W2055154647 @default.
- W2725249225 cites W2058248640 @default.
- W2725249225 cites W2063846874 @default.
- W2725249225 cites W2064903582 @default.
- W2725249225 cites W2069753406 @default.
- W2725249225 cites W2089871318 @default.
- W2725249225 cites W2092271904 @default.
- W2725249225 cites W2095193497 @default.
- W2725249225 cites W2105005539 @default.
- W2725249225 cites W2111078766 @default.
- W2725249225 cites W2116312942 @default.
- W2725249225 cites W2117308775 @default.
- W2725249225 cites W2119508504 @default.
- W2725249225 cites W2137370054 @default.
- W2725249225 cites W2139771908 @default.
- W2725249225 cites W2150291618 @default.
- W2725249225 cites W2150847344 @default.
- W2725249225 cites W2151832869 @default.
- W2725249225 cites W2208550830 @default.
- W2725249225 cites W2261839053 @default.
- W2725249225 cites W2476591869 @default.
- W2725249225 cites W2571942655 @default.
- W2725249225 cites W2594172108 @default.
- W2725249225 cites W2624816748 @default.
- W2725249225 cites W2672036126 @default.
- W2725249225 cites W2774700420 @default.
- W2725249225 cites W2807340117 @default.
- W2725249225 cites W2884147779 @default.
- W2725249225 cites W2903845992 @default.
- W2725249225 cites W2950605512 @default.
- W2725249225 cites W2962695761 @default.
- W2725249225 cites W2962727190 @default.
- W2725249225 cites W2962881093 @default.
- W2725249225 cites W2963371984 @default.
- W2725249225 cites W2964187881 @default.
- W2725249225 cites W2964261049 @default.
- W2725249225 cites W3049306221 @default.
- W2725249225 cites W3122415203 @default.
- W2725249225 cites W3124999902 @default.
- W2725249225 cites W3150893739 @default.
- W2725249225 cites W3214323364 @default.
- W2725249225 cites W2108719358 @default.
- W2725249225 hasPublicationYear "2017" @default.
- W2725249225 type Work @default.
- W2725249225 sameAs 2725249225 @default.
- W2725249225 citedByCount "85" @default.
- W2725249225 countsByYear W27252492252017 @default.
- W2725249225 countsByYear W27252492252018 @default.
- W2725249225 countsByYear W27252492252019 @default.
- W2725249225 countsByYear W27252492252020 @default.
- W2725249225 countsByYear W27252492252021 @default.
- W2725249225 crossrefType "posted-content" @default.
- W2725249225 hasAuthorship W2725249225A5008199122 @default.
- W2725249225 hasAuthorship W2725249225A5033884286 @default.
- W2725249225 hasAuthorship W2725249225A5051287606 @default.
- W2725249225 hasConcept C105795698 @default.
- W2725249225 hasConcept C107673813 @default.
- W2725249225 hasConcept C119043178 @default.
- W2725249225 hasConcept C149782125 @default.
- W2725249225 hasConcept C152877465 @default.
- W2725249225 hasConcept C158600405 @default.
- W2725249225 hasConcept C17923572 @default.
- W2725249225 hasConcept C23131810 @default.
- W2725249225 hasConcept C33923547 @default.
- W2725249225 hasConcept C41008148 @default.
- W2725249225 hasConcept C77350462 @default.
- W2725249225 hasConcept C83546350 @default.
- W2725249225 hasConceptScore W2725249225C105795698 @default.
- W2725249225 hasConceptScore W2725249225C107673813 @default.
- W2725249225 hasConceptScore W2725249225C119043178 @default.
- W2725249225 hasConceptScore W2725249225C149782125 @default.
- W2725249225 hasConceptScore W2725249225C152877465 @default.
- W2725249225 hasConceptScore W2725249225C158600405 @default.
- W2725249225 hasConceptScore W2725249225C17923572 @default.
- W2725249225 hasConceptScore W2725249225C23131810 @default.
- W2725249225 hasConceptScore W2725249225C33923547 @default.
- W2725249225 hasConceptScore W2725249225C41008148 @default.
- W2725249225 hasConceptScore W2725249225C77350462 @default.