Matches in SemOpenAlex for { <https://semopenalex.org/work/W2725249286> ?p ?o ?g. }
- W2725249286 endingPage "141" @default.
- W2725249286 startingPage "128" @default.
- W2725249286 abstract "Motivated by the fact that unlabeled data can be easily collected and help to exploit the correlations among different modalities, this paper proposes a novel method named generalized semi-supervised structured subspace learning (GSS-SL) for the task of cross-modal retrieval. First, to predict more relevant class labels for unlabeled data, we propose a label graph constraint that ensures the intrinsic geometric structures of different feature spaces consistent with that of label space. Second, considering that class labels directly reveal the semantic information of multimedia data, GSS-SL takes the label space as a linkage to model the correlations among different modalities. Concretely, the label graph constraint, label-linked loss function, and regularization are integrated into a joint minimization formulation to learn a discriminative common subspace. Finally, an efficient optimization algorithm is designed to alternately optimize multiple linear transformations for different modalities and update the class indicator matrices for unlabeled data. Furthermore, an arbitrary number of modalities can be solved in the proposed framework. Extensive experiments on three standard benchmark datasets demonstrate that GSS-SL outperforms previous methods on exploiting the correlations among different modalities." @default.
- W2725249286 created "2017-07-14" @default.
- W2725249286 creator A5028597017 @default.
- W2725249286 creator A5041045297 @default.
- W2725249286 creator A5047455588 @default.
- W2725249286 creator A5066599847 @default.
- W2725249286 creator A5086252890 @default.
- W2725249286 date "2018-01-01" @default.
- W2725249286 modified "2023-10-14" @default.
- W2725249286 title "Generalized Semi-supervised and Structured Subspace Learning for Cross-Modal Retrieval" @default.
- W2725249286 cites W2005666090 @default.
- W2725249286 cites W2007972815 @default.
- W2725249286 cites W2013535308 @default.
- W2725249286 cites W2022398331 @default.
- W2725249286 cites W2029163572 @default.
- W2725249286 cites W2030899956 @default.
- W2725249286 cites W2031489346 @default.
- W2725249286 cites W2052727801 @default.
- W2725249286 cites W2056935845 @default.
- W2725249286 cites W2070753207 @default.
- W2725249286 cites W2071207147 @default.
- W2725249286 cites W2085348055 @default.
- W2725249286 cites W2087501015 @default.
- W2725249286 cites W2100235303 @default.
- W2725249286 cites W2100495367 @default.
- W2725249286 cites W2106277773 @default.
- W2725249286 cites W2120750550 @default.
- W2725249286 cites W2132551672 @default.
- W2725249286 cites W2138118304 @default.
- W2725249286 cites W2155893237 @default.
- W2725249286 cites W2164530430 @default.
- W2725249286 cites W2170653751 @default.
- W2725249286 cites W2186500555 @default.
- W2725249286 cites W2210322478 @default.
- W2725249286 cites W2316082076 @default.
- W2725249286 cites W2527187232 @default.
- W2725249286 cites W2563587296 @default.
- W2725249286 cites W3148981562 @default.
- W2725249286 cites W4250589301 @default.
- W2725249286 doi "https://doi.org/10.1109/tmm.2017.2723841" @default.
- W2725249286 hasPublicationYear "2018" @default.
- W2725249286 type Work @default.
- W2725249286 sameAs 2725249286 @default.
- W2725249286 citedByCount "106" @default.
- W2725249286 countsByYear W27252492862018 @default.
- W2725249286 countsByYear W27252492862019 @default.
- W2725249286 countsByYear W27252492862020 @default.
- W2725249286 countsByYear W27252492862021 @default.
- W2725249286 countsByYear W27252492862022 @default.
- W2725249286 countsByYear W27252492862023 @default.
- W2725249286 crossrefType "journal-article" @default.
- W2725249286 hasAuthorship W2725249286A5028597017 @default.
- W2725249286 hasAuthorship W2725249286A5041045297 @default.
- W2725249286 hasAuthorship W2725249286A5047455588 @default.
- W2725249286 hasAuthorship W2725249286A5066599847 @default.
- W2725249286 hasAuthorship W2725249286A5086252890 @default.
- W2725249286 hasConcept C119857082 @default.
- W2725249286 hasConcept C132525143 @default.
- W2725249286 hasConcept C13280743 @default.
- W2725249286 hasConcept C144024400 @default.
- W2725249286 hasConcept C153180895 @default.
- W2725249286 hasConcept C154945302 @default.
- W2725249286 hasConcept C185798385 @default.
- W2725249286 hasConcept C205649164 @default.
- W2725249286 hasConcept C2524010 @default.
- W2725249286 hasConcept C2776036281 @default.
- W2725249286 hasConcept C2776135515 @default.
- W2725249286 hasConcept C2777212361 @default.
- W2725249286 hasConcept C2779903281 @default.
- W2725249286 hasConcept C32834561 @default.
- W2725249286 hasConcept C33923547 @default.
- W2725249286 hasConcept C36289849 @default.
- W2725249286 hasConcept C41008148 @default.
- W2725249286 hasConcept C58973888 @default.
- W2725249286 hasConcept C59404180 @default.
- W2725249286 hasConcept C80444323 @default.
- W2725249286 hasConcept C83665646 @default.
- W2725249286 hasConcept C97931131 @default.
- W2725249286 hasConceptScore W2725249286C119857082 @default.
- W2725249286 hasConceptScore W2725249286C132525143 @default.
- W2725249286 hasConceptScore W2725249286C13280743 @default.
- W2725249286 hasConceptScore W2725249286C144024400 @default.
- W2725249286 hasConceptScore W2725249286C153180895 @default.
- W2725249286 hasConceptScore W2725249286C154945302 @default.
- W2725249286 hasConceptScore W2725249286C185798385 @default.
- W2725249286 hasConceptScore W2725249286C205649164 @default.
- W2725249286 hasConceptScore W2725249286C2524010 @default.
- W2725249286 hasConceptScore W2725249286C2776036281 @default.
- W2725249286 hasConceptScore W2725249286C2776135515 @default.
- W2725249286 hasConceptScore W2725249286C2777212361 @default.
- W2725249286 hasConceptScore W2725249286C2779903281 @default.
- W2725249286 hasConceptScore W2725249286C32834561 @default.
- W2725249286 hasConceptScore W2725249286C33923547 @default.
- W2725249286 hasConceptScore W2725249286C36289849 @default.
- W2725249286 hasConceptScore W2725249286C41008148 @default.
- W2725249286 hasConceptScore W2725249286C58973888 @default.
- W2725249286 hasConceptScore W2725249286C59404180 @default.
- W2725249286 hasConceptScore W2725249286C80444323 @default.