Matches in SemOpenAlex for { <https://semopenalex.org/work/W2725497823> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2725497823 endingPage "230949901771624" @default.
- W2725497823 startingPage "230949901771624" @default.
- W2725497823 abstract "The purpose of this article is to compare the predictive power of two models trained with computed tomography (CT)-based radiological features and both CT-based radiological and clinical features for pathologic femoral fractures in patients with lung cancer using machine learning algorithms.Between January 2010 and December 2014, 315 lung cancer patients with metastasis to the femur were included. Among them, 84 patients who underwent CT scan and were followed up for more than 3 months were enrolled. We examined clinical and radiological risk factors affecting pathologic fracture through logistic regression. Predictive analysis was performed using five different supervised learning algorithms. The power of predictive model trained with CT-based radiological features was compared to those trained with both CT-based radiological and clinical features.In multivariate logistic regression, female sex (odds ratio = 0.25, p = 0.0126), osteolysis (odds ratio = 7.62, p = 0.0239), and absence of radiation therapy (odds ratio = 10.25, p = 0.0258) significantly increased the risk of pathologic fracture in proximal femur. The predictive model trained with both CT-based radiological and clinical features showed the highest area under the receiver operating characteristic curve (0.80 ± 0.14, p < 0.0001) through gradient boosting algorithm.We believe that machine learning algorithms may be useful in the prediction of pathologic femoral fracture, which are multifactorial problem." @default.
- W2725497823 created "2017-07-14" @default.
- W2725497823 creator A5005708428 @default.
- W2725497823 creator A5014555716 @default.
- W2725497823 creator A5022690482 @default.
- W2725497823 creator A5045566016 @default.
- W2725497823 creator A5064355894 @default.
- W2725497823 creator A5086877012 @default.
- W2725497823 date "2017-05-01" @default.
- W2725497823 modified "2023-10-18" @default.
- W2725497823 title "Prediction of pathologic femoral fractures in patients with lung cancer using machine learning algorithms: Comparison of computed tomography-based radiological features with clinical features versus without clinical features" @default.
- W2725497823 cites W1990260235 @default.
- W2725497823 cites W1995267372 @default.
- W2725497823 cites W2011926580 @default.
- W2725497823 cites W2012608156 @default.
- W2725497823 cites W2094460658 @default.
- W2725497823 cites W2161962336 @default.
- W2725497823 cites W2328176404 @default.
- W2725497823 doi "https://doi.org/10.1177/2309499017716243" @default.
- W2725497823 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28659051" @default.
- W2725497823 hasPublicationYear "2017" @default.
- W2725497823 type Work @default.
- W2725497823 sameAs 2725497823 @default.
- W2725497823 citedByCount "21" @default.
- W2725497823 countsByYear W27254978232020 @default.
- W2725497823 countsByYear W27254978232021 @default.
- W2725497823 countsByYear W27254978232022 @default.
- W2725497823 countsByYear W27254978232023 @default.
- W2725497823 crossrefType "journal-article" @default.
- W2725497823 hasAuthorship W2725497823A5005708428 @default.
- W2725497823 hasAuthorship W2725497823A5014555716 @default.
- W2725497823 hasAuthorship W2725497823A5022690482 @default.
- W2725497823 hasAuthorship W2725497823A5045566016 @default.
- W2725497823 hasAuthorship W2725497823A5064355894 @default.
- W2725497823 hasAuthorship W2725497823A5086877012 @default.
- W2725497823 hasBestOaLocation W27254978231 @default.
- W2725497823 hasConcept C11413529 @default.
- W2725497823 hasConcept C119857082 @default.
- W2725497823 hasConcept C126322002 @default.
- W2725497823 hasConcept C126838900 @default.
- W2725497823 hasConcept C141071460 @default.
- W2725497823 hasConcept C151956035 @default.
- W2725497823 hasConcept C156957248 @default.
- W2725497823 hasConcept C190892606 @default.
- W2725497823 hasConcept C2776256026 @default.
- W2725497823 hasConcept C2780554211 @default.
- W2725497823 hasConcept C41008148 @default.
- W2725497823 hasConcept C509974204 @default.
- W2725497823 hasConcept C58471807 @default.
- W2725497823 hasConcept C71924100 @default.
- W2725497823 hasConceptScore W2725497823C11413529 @default.
- W2725497823 hasConceptScore W2725497823C119857082 @default.
- W2725497823 hasConceptScore W2725497823C126322002 @default.
- W2725497823 hasConceptScore W2725497823C126838900 @default.
- W2725497823 hasConceptScore W2725497823C141071460 @default.
- W2725497823 hasConceptScore W2725497823C151956035 @default.
- W2725497823 hasConceptScore W2725497823C156957248 @default.
- W2725497823 hasConceptScore W2725497823C190892606 @default.
- W2725497823 hasConceptScore W2725497823C2776256026 @default.
- W2725497823 hasConceptScore W2725497823C2780554211 @default.
- W2725497823 hasConceptScore W2725497823C41008148 @default.
- W2725497823 hasConceptScore W2725497823C509974204 @default.
- W2725497823 hasConceptScore W2725497823C58471807 @default.
- W2725497823 hasConceptScore W2725497823C71924100 @default.
- W2725497823 hasIssue "2" @default.
- W2725497823 hasLocation W27254978231 @default.
- W2725497823 hasLocation W27254978232 @default.
- W2725497823 hasOpenAccess W2725497823 @default.
- W2725497823 hasPrimaryLocation W27254978231 @default.
- W2725497823 hasRelatedWork W2419079049 @default.
- W2725497823 hasRelatedWork W2770058211 @default.
- W2725497823 hasRelatedWork W2799952019 @default.
- W2725497823 hasRelatedWork W3047552631 @default.
- W2725497823 hasRelatedWork W3099386970 @default.
- W2725497823 hasRelatedWork W3159096857 @default.
- W2725497823 hasRelatedWork W4205361111 @default.
- W2725497823 hasRelatedWork W4316658362 @default.
- W2725497823 hasRelatedWork W4367596031 @default.
- W2725497823 hasRelatedWork W4381196950 @default.
- W2725497823 hasVolume "25" @default.
- W2725497823 isParatext "false" @default.
- W2725497823 isRetracted "false" @default.
- W2725497823 magId "2725497823" @default.
- W2725497823 workType "article" @default.