Matches in SemOpenAlex for { <https://semopenalex.org/work/W2726547057> ?p ?o ?g. }
- W2726547057 endingPage "203" @default.
- W2726547057 startingPage "193" @default.
- W2726547057 abstract "Using swarm robotics system, with one or more faulty robots, to accomplish specific tasks may lead to degradation in performances complying with the target requirements. In such circumstances, robot swarms require continuous monitoring to detect abnormal events and to sustain normal operations. In this paper, an innovative exogenous fault detection method for monitoring robots swarm is presented. The method merges the flexibility of principal component analysis (PCA) models and the greater sensitivity of the exponentially-weighted moving average (EWMA) and cumulative sum (CUSUM) control charts to insidious changes. The method is tested and evaluated on a swarm of simulated foot-bot robots performing a circle formation task, via the viscoelastic control model. We illustrate through simulated data collected from the ARGoS simulator that a significant improvement in fault detection can be obtained by using the proposed method where compared to the conventional PCA-based methods (i.e., T2 and Q)." @default.
- W2726547057 created "2017-07-14" @default.
- W2726547057 creator A5037488149 @default.
- W2726547057 creator A5063891246 @default.
- W2726547057 creator A5087572406 @default.
- W2726547057 creator A5090118631 @default.
- W2726547057 date "2017-11-01" @default.
- W2726547057 modified "2023-09-26" @default.
- W2726547057 title "Monitoring a robot swarm using a data-driven fault detection approach" @default.
- W2726547057 cites W1422687376 @default.
- W2726547057 cites W1510006579 @default.
- W2726547057 cites W1604520938 @default.
- W2726547057 cites W1969409474 @default.
- W2726547057 cites W1978295341 @default.
- W2726547057 cites W1999935041 @default.
- W2726547057 cites W2017150251 @default.
- W2726547057 cites W2026233734 @default.
- W2726547057 cites W2052004671 @default.
- W2726547057 cites W2084092751 @default.
- W2726547057 cites W2093113419 @default.
- W2726547057 cites W2104993896 @default.
- W2726547057 cites W2111952942 @default.
- W2726547057 cites W212036681 @default.
- W2726547057 cites W2149684740 @default.
- W2726547057 cites W2169347809 @default.
- W2726547057 cites W2175657233 @default.
- W2726547057 cites W2189324756 @default.
- W2726547057 cites W2191312089 @default.
- W2726547057 cites W2263682090 @default.
- W2726547057 cites W2512468854 @default.
- W2726547057 cites W2516336141 @default.
- W2726547057 cites W4249116379 @default.
- W2726547057 cites W988335224 @default.
- W2726547057 doi "https://doi.org/10.1016/j.robot.2017.06.002" @default.
- W2726547057 hasPublicationYear "2017" @default.
- W2726547057 type Work @default.
- W2726547057 sameAs 2726547057 @default.
- W2726547057 citedByCount "30" @default.
- W2726547057 countsByYear W27265470572018 @default.
- W2726547057 countsByYear W27265470572019 @default.
- W2726547057 countsByYear W27265470572020 @default.
- W2726547057 countsByYear W27265470572021 @default.
- W2726547057 countsByYear W27265470572022 @default.
- W2726547057 countsByYear W27265470572023 @default.
- W2726547057 crossrefType "journal-article" @default.
- W2726547057 hasAuthorship W2726547057A5037488149 @default.
- W2726547057 hasAuthorship W2726547057A5063891246 @default.
- W2726547057 hasAuthorship W2726547057A5087572406 @default.
- W2726547057 hasAuthorship W2726547057A5090118631 @default.
- W2726547057 hasBestOaLocation W27265470572 @default.
- W2726547057 hasConcept C105795698 @default.
- W2726547057 hasConcept C111919701 @default.
- W2726547057 hasConcept C127313418 @default.
- W2726547057 hasConcept C127413603 @default.
- W2726547057 hasConcept C152745839 @default.
- W2726547057 hasConcept C154945302 @default.
- W2726547057 hasConcept C165205528 @default.
- W2726547057 hasConcept C169337768 @default.
- W2726547057 hasConcept C172707124 @default.
- W2726547057 hasConcept C175551986 @default.
- W2726547057 hasConcept C178518018 @default.
- W2726547057 hasConcept C181335050 @default.
- W2726547057 hasConcept C196985124 @default.
- W2726547057 hasConcept C21200559 @default.
- W2726547057 hasConcept C24326235 @default.
- W2726547057 hasConcept C27438332 @default.
- W2726547057 hasConcept C2780440489 @default.
- W2726547057 hasConcept C2780598303 @default.
- W2726547057 hasConcept C33923547 @default.
- W2726547057 hasConcept C41008148 @default.
- W2726547057 hasConcept C44154836 @default.
- W2726547057 hasConcept C74746147 @default.
- W2726547057 hasConcept C79403827 @default.
- W2726547057 hasConcept C90509273 @default.
- W2726547057 hasConcept C98045186 @default.
- W2726547057 hasConceptScore W2726547057C105795698 @default.
- W2726547057 hasConceptScore W2726547057C111919701 @default.
- W2726547057 hasConceptScore W2726547057C127313418 @default.
- W2726547057 hasConceptScore W2726547057C127413603 @default.
- W2726547057 hasConceptScore W2726547057C152745839 @default.
- W2726547057 hasConceptScore W2726547057C154945302 @default.
- W2726547057 hasConceptScore W2726547057C165205528 @default.
- W2726547057 hasConceptScore W2726547057C169337768 @default.
- W2726547057 hasConceptScore W2726547057C172707124 @default.
- W2726547057 hasConceptScore W2726547057C175551986 @default.
- W2726547057 hasConceptScore W2726547057C178518018 @default.
- W2726547057 hasConceptScore W2726547057C181335050 @default.
- W2726547057 hasConceptScore W2726547057C196985124 @default.
- W2726547057 hasConceptScore W2726547057C21200559 @default.
- W2726547057 hasConceptScore W2726547057C24326235 @default.
- W2726547057 hasConceptScore W2726547057C27438332 @default.
- W2726547057 hasConceptScore W2726547057C2780440489 @default.
- W2726547057 hasConceptScore W2726547057C2780598303 @default.
- W2726547057 hasConceptScore W2726547057C33923547 @default.
- W2726547057 hasConceptScore W2726547057C41008148 @default.
- W2726547057 hasConceptScore W2726547057C44154836 @default.
- W2726547057 hasConceptScore W2726547057C74746147 @default.
- W2726547057 hasConceptScore W2726547057C79403827 @default.