Matches in SemOpenAlex for { <https://semopenalex.org/work/W2726765978> ?p ?o ?g. }
- W2726765978 endingPage "558" @default.
- W2726765978 startingPage "544" @default.
- W2726765978 abstract "Traditional linear methods for forecasting multivariate time series are not able to satisfactorily model the non-linear dependencies that may exist in non-Gaussian series. We build on the theory of learning vector-valued functions in the reproducing kernel Hilbert space and develop a method for learning prediction functions that accommodate such non-linearities. The method not only learns the predictive function but also the matrix-valued kernel underlying the function search space directly from the data. Our approach is based on learning multiple matrix-valued kernels, each of those composed of a set of input kernels and a set of output kernels learned in the cone of positive semi-definite matrices. In addition to superior predictive performance in the presence of strong non-linearities, our method also recovers the hidden dynamic relationships between the series and thus is a new alternative to existing graphical Granger techniques." @default.
- W2726765978 created "2017-07-14" @default.
- W2726765978 creator A5044131928 @default.
- W2726765978 creator A5061688822 @default.
- W2726765978 creator A5084831490 @default.
- W2726765978 date "2017-01-01" @default.
- W2726765978 modified "2023-09-24" @default.
- W2726765978 title "Forecasting and Granger Modelling with Non-linear Dynamical Dependencies" @default.
- W2726765978 cites W2053559248 @default.
- W2726765978 cites W2085560853 @default.
- W2726765978 cites W2092766760 @default.
- W2726765978 cites W2115003579 @default.
- W2726765978 cites W2118418963 @default.
- W2726765978 cites W2132663737 @default.
- W2726765978 cites W2138019504 @default.
- W2726765978 cites W2178225550 @default.
- W2726765978 cites W2271221198 @default.
- W2726765978 cites W2402072492 @default.
- W2726765978 cites W2489538485 @default.
- W2726765978 cites W3100543032 @default.
- W2726765978 cites W4205213118 @default.
- W2726765978 cites W4292081285 @default.
- W2726765978 doi "https://doi.org/10.1007/978-3-319-71246-8_33" @default.
- W2726765978 hasPublicationYear "2017" @default.
- W2726765978 type Work @default.
- W2726765978 sameAs 2726765978 @default.
- W2726765978 citedByCount "2" @default.
- W2726765978 countsByYear W27267659782018 @default.
- W2726765978 countsByYear W27267659782021 @default.
- W2726765978 crossrefType "book-chapter" @default.
- W2726765978 hasAuthorship W2726765978A5044131928 @default.
- W2726765978 hasAuthorship W2726765978A5061688822 @default.
- W2726765978 hasAuthorship W2726765978A5084831490 @default.
- W2726765978 hasBestOaLocation W27267659782 @default.
- W2726765978 hasConcept C106487976 @default.
- W2726765978 hasConcept C11413529 @default.
- W2726765978 hasConcept C118615104 @default.
- W2726765978 hasConcept C119857082 @default.
- W2726765978 hasConcept C121332964 @default.
- W2726765978 hasConcept C122280245 @default.
- W2726765978 hasConcept C12267149 @default.
- W2726765978 hasConcept C134306372 @default.
- W2726765978 hasConcept C143724316 @default.
- W2726765978 hasConcept C151406439 @default.
- W2726765978 hasConcept C151730666 @default.
- W2726765978 hasConcept C154945302 @default.
- W2726765978 hasConcept C159985019 @default.
- W2726765978 hasConcept C163716315 @default.
- W2726765978 hasConcept C177264268 @default.
- W2726765978 hasConcept C192562407 @default.
- W2726765978 hasConcept C199360897 @default.
- W2726765978 hasConcept C28826006 @default.
- W2726765978 hasConcept C33923547 @default.
- W2726765978 hasConcept C41008148 @default.
- W2726765978 hasConcept C62520636 @default.
- W2726765978 hasConcept C62799726 @default.
- W2726765978 hasConcept C7218915 @default.
- W2726765978 hasConcept C74193536 @default.
- W2726765978 hasConcept C80884492 @default.
- W2726765978 hasConcept C86803240 @default.
- W2726765978 hasConceptScore W2726765978C106487976 @default.
- W2726765978 hasConceptScore W2726765978C11413529 @default.
- W2726765978 hasConceptScore W2726765978C118615104 @default.
- W2726765978 hasConceptScore W2726765978C119857082 @default.
- W2726765978 hasConceptScore W2726765978C121332964 @default.
- W2726765978 hasConceptScore W2726765978C122280245 @default.
- W2726765978 hasConceptScore W2726765978C12267149 @default.
- W2726765978 hasConceptScore W2726765978C134306372 @default.
- W2726765978 hasConceptScore W2726765978C143724316 @default.
- W2726765978 hasConceptScore W2726765978C151406439 @default.
- W2726765978 hasConceptScore W2726765978C151730666 @default.
- W2726765978 hasConceptScore W2726765978C154945302 @default.
- W2726765978 hasConceptScore W2726765978C159985019 @default.
- W2726765978 hasConceptScore W2726765978C163716315 @default.
- W2726765978 hasConceptScore W2726765978C177264268 @default.
- W2726765978 hasConceptScore W2726765978C192562407 @default.
- W2726765978 hasConceptScore W2726765978C199360897 @default.
- W2726765978 hasConceptScore W2726765978C28826006 @default.
- W2726765978 hasConceptScore W2726765978C33923547 @default.
- W2726765978 hasConceptScore W2726765978C41008148 @default.
- W2726765978 hasConceptScore W2726765978C62520636 @default.
- W2726765978 hasConceptScore W2726765978C62799726 @default.
- W2726765978 hasConceptScore W2726765978C7218915 @default.
- W2726765978 hasConceptScore W2726765978C74193536 @default.
- W2726765978 hasConceptScore W2726765978C80884492 @default.
- W2726765978 hasConceptScore W2726765978C86803240 @default.
- W2726765978 hasLocation W27267659781 @default.
- W2726765978 hasLocation W27267659782 @default.
- W2726765978 hasLocation W27267659783 @default.
- W2726765978 hasLocation W27267659784 @default.
- W2726765978 hasLocation W27267659785 @default.
- W2726765978 hasLocation W27267659786 @default.
- W2726765978 hasOpenAccess W2726765978 @default.
- W2726765978 hasPrimaryLocation W27267659781 @default.
- W2726765978 hasRelatedWork W183296071 @default.
- W2726765978 hasRelatedWork W2037495825 @default.
- W2726765978 hasRelatedWork W2095593773 @default.
- W2726765978 hasRelatedWork W2122789001 @default.