Matches in SemOpenAlex for { <https://semopenalex.org/work/W2727599097> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2727599097 endingPage "402" @default.
- W2727599097 startingPage "391" @default.
- W2727599097 abstract "Churn prediction is an important factor to consider for Customer Relationship Management (CRM). In this study, statistical and data mining techniques were used for churn prediction. We use linear (logistic regression) and non-linear techniques of Random Forest and Deep Learning architectures including Deep Neural Network, Deep Belief Networks and Recurrent Neural Networks for prediction. This is the first time that a comparative study of conventional machine learning methods with deep learning techniques have been carried out for churn prediction. It is observed that non-linear models performed the best. Such predictive models have the potential to be used in the telecom industry for making better decisions and customer management." @default.
- W2727599097 created "2017-07-14" @default.
- W2727599097 creator A5014800254 @default.
- W2727599097 creator A5035770861 @default.
- W2727599097 creator A5066829127 @default.
- W2727599097 date "2017-01-01" @default.
- W2727599097 modified "2023-09-26" @default.
- W2727599097 title "High Accuracy Predictive Modelling for Customer Churn Prediction in Telecom Industry" @default.
- W2727599097 cites W1989049108 @default.
- W2727599097 cites W2032225949 @default.
- W2727599097 cites W2054640944 @default.
- W2727599097 cites W2074780813 @default.
- W2727599097 cites W2076063813 @default.
- W2727599097 cites W2089215879 @default.
- W2727599097 cites W2100495367 @default.
- W2727599097 cites W2136922672 @default.
- W2727599097 cites W2490017371 @default.
- W2727599097 cites W2911964244 @default.
- W2727599097 cites W2919115771 @default.
- W2727599097 cites W2922129458 @default.
- W2727599097 cites W4238404964 @default.
- W2727599097 doi "https://doi.org/10.1007/978-3-319-62416-7_28" @default.
- W2727599097 hasPublicationYear "2017" @default.
- W2727599097 type Work @default.
- W2727599097 sameAs 2727599097 @default.
- W2727599097 citedByCount "17" @default.
- W2727599097 countsByYear W27275990972017 @default.
- W2727599097 countsByYear W27275990972018 @default.
- W2727599097 countsByYear W27275990972019 @default.
- W2727599097 countsByYear W27275990972020 @default.
- W2727599097 countsByYear W27275990972021 @default.
- W2727599097 countsByYear W27275990972022 @default.
- W2727599097 countsByYear W27275990972023 @default.
- W2727599097 crossrefType "book-chapter" @default.
- W2727599097 hasAuthorship W2727599097A5014800254 @default.
- W2727599097 hasAuthorship W2727599097A5035770861 @default.
- W2727599097 hasAuthorship W2727599097A5066829127 @default.
- W2727599097 hasConcept C119857082 @default.
- W2727599097 hasConcept C127413603 @default.
- W2727599097 hasConcept C13736549 @default.
- W2727599097 hasConcept C41008148 @default.
- W2727599097 hasConcept C42475967 @default.
- W2727599097 hasConcept C45804977 @default.
- W2727599097 hasConcept C76155785 @default.
- W2727599097 hasConceptScore W2727599097C119857082 @default.
- W2727599097 hasConceptScore W2727599097C127413603 @default.
- W2727599097 hasConceptScore W2727599097C13736549 @default.
- W2727599097 hasConceptScore W2727599097C41008148 @default.
- W2727599097 hasConceptScore W2727599097C42475967 @default.
- W2727599097 hasConceptScore W2727599097C45804977 @default.
- W2727599097 hasConceptScore W2727599097C76155785 @default.
- W2727599097 hasLocation W27275990971 @default.
- W2727599097 hasOpenAccess W2727599097 @default.
- W2727599097 hasPrimaryLocation W27275990971 @default.
- W2727599097 hasRelatedWork W1529033025 @default.
- W2727599097 hasRelatedWork W2026698676 @default.
- W2727599097 hasRelatedWork W2050499564 @default.
- W2727599097 hasRelatedWork W2154000120 @default.
- W2727599097 hasRelatedWork W2221091578 @default.
- W2727599097 hasRelatedWork W2752271524 @default.
- W2727599097 hasRelatedWork W29008652 @default.
- W2727599097 hasRelatedWork W3041238038 @default.
- W2727599097 hasRelatedWork W3124089987 @default.
- W2727599097 hasRelatedWork W103318724 @default.
- W2727599097 isParatext "false" @default.
- W2727599097 isRetracted "false" @default.
- W2727599097 magId "2727599097" @default.
- W2727599097 workType "book-chapter" @default.