Matches in SemOpenAlex for { <https://semopenalex.org/work/W2728006983> ?p ?o ?g. }
- W2728006983 abstract "While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to which extent it can describe metal-insulator transitions in real solids, where non-local Coulomb interactions are always present. By using a variational principle, we clarify this issue for short- and long-ranged non-local Coulomb interactions for half-filled systems on bipartite lattices. We find that repulsive non-local interactions generally stabilize the Fermi-liquid regime. The metal-insulator phase boundary is shifted to larger interaction strengths to leading order linearly with non-local interactions. Importantly, non-local interactions can raise the order of the metal-insulator transition. We present a detailed analysis of how the dimension and geometry of the lattice as well as the temperature determine the critical non-local interaction leading to a first-order transition: for systems in more than two dimensions with non-zero density of states at the Fermi energy the critical non-local interaction is arbitrarily small; otherwise it is finite." @default.
- W2728006983 created "2017-07-14" @default.
- W2728006983 creator A5005294299 @default.
- W2728006983 creator A5018940807 @default.
- W2728006983 creator A5049179427 @default.
- W2728006983 creator A5052554493 @default.
- W2728006983 date "2018-04-23" @default.
- W2728006983 modified "2023-09-24" @default.
- W2728006983 title "First-order metal-insulator transitions in the extended Hubbard model due to self-consistent screening of the effective interaction" @default.
- W2728006983 cites W1532635894 @default.
- W2728006983 cites W170140609 @default.
- W2728006983 cites W1963772503 @default.
- W2728006983 cites W1963796153 @default.
- W2728006983 cites W1963888487 @default.
- W2728006983 cites W1971999416 @default.
- W2728006983 cites W1972068641 @default.
- W2728006983 cites W1972503871 @default.
- W2728006983 cites W1972540241 @default.
- W2728006983 cites W1973315818 @default.
- W2728006983 cites W1973399866 @default.
- W2728006983 cites W1976539350 @default.
- W2728006983 cites W1982598496 @default.
- W2728006983 cites W1988150410 @default.
- W2728006983 cites W1991675999 @default.
- W2728006983 cites W2001445685 @default.
- W2728006983 cites W2008348370 @default.
- W2728006983 cites W2017268105 @default.
- W2728006983 cites W2024943930 @default.
- W2728006983 cites W2026464562 @default.
- W2728006983 cites W2029116885 @default.
- W2728006983 cites W2031594389 @default.
- W2728006983 cites W2034979134 @default.
- W2728006983 cites W2040584883 @default.
- W2728006983 cites W2052292796 @default.
- W2728006983 cites W2058666533 @default.
- W2728006983 cites W2058990947 @default.
- W2728006983 cites W2065240517 @default.
- W2728006983 cites W2065473496 @default.
- W2728006983 cites W2067041030 @default.
- W2728006983 cites W2071432767 @default.
- W2728006983 cites W2073660524 @default.
- W2728006983 cites W2073665258 @default.
- W2728006983 cites W2085914164 @default.
- W2728006983 cites W2105879468 @default.
- W2728006983 cites W2109606373 @default.
- W2728006983 cites W2115431053 @default.
- W2728006983 cites W2122045419 @default.
- W2728006983 cites W2146061884 @default.
- W2728006983 cites W2171233371 @default.
- W2728006983 cites W2172568165 @default.
- W2728006983 cites W2175014010 @default.
- W2728006983 cites W2301524134 @default.
- W2728006983 cites W2316425622 @default.
- W2728006983 cites W2320197828 @default.
- W2728006983 cites W2320321931 @default.
- W2728006983 cites W2412149379 @default.
- W2728006983 cites W2554872430 @default.
- W2728006983 cites W2580666987 @default.
- W2728006983 cites W2582719166 @default.
- W2728006983 cites W3100601456 @default.
- W2728006983 cites W3121685134 @default.
- W2728006983 cites W3209134031 @default.
- W2728006983 cites W4213299182 @default.
- W2728006983 cites W4300512186 @default.
- W2728006983 cites W569187545 @default.
- W2728006983 doi "https://doi.org/10.1103/physrevb.97.165135" @default.
- W2728006983 hasPublicationYear "2018" @default.
- W2728006983 type Work @default.
- W2728006983 sameAs 2728006983 @default.
- W2728006983 citedByCount "10" @default.
- W2728006983 countsByYear W27280069832019 @default.
- W2728006983 countsByYear W27280069832020 @default.
- W2728006983 countsByYear W27280069832021 @default.
- W2728006983 countsByYear W27280069832022 @default.
- W2728006983 crossrefType "journal-article" @default.
- W2728006983 hasAuthorship W2728006983A5005294299 @default.
- W2728006983 hasAuthorship W2728006983A5018940807 @default.
- W2728006983 hasAuthorship W2728006983A5049179427 @default.
- W2728006983 hasAuthorship W2728006983A5052554493 @default.
- W2728006983 hasBestOaLocation W27280069832 @default.
- W2728006983 hasConcept C106074065 @default.
- W2728006983 hasConcept C121332964 @default.
- W2728006983 hasConcept C136766821 @default.
- W2728006983 hasConcept C147120987 @default.
- W2728006983 hasConcept C149288129 @default.
- W2728006983 hasConcept C179936367 @default.
- W2728006983 hasConcept C22499117 @default.
- W2728006983 hasConcept C24890656 @default.
- W2728006983 hasConcept C26873012 @default.
- W2728006983 hasConcept C2781204021 @default.
- W2728006983 hasConcept C32909587 @default.
- W2728006983 hasConcept C54101563 @default.
- W2728006983 hasConcept C62520636 @default.
- W2728006983 hasConcept C69990965 @default.
- W2728006983 hasConcept C9342510 @default.
- W2728006983 hasConceptScore W2728006983C106074065 @default.
- W2728006983 hasConceptScore W2728006983C121332964 @default.
- W2728006983 hasConceptScore W2728006983C136766821 @default.
- W2728006983 hasConceptScore W2728006983C147120987 @default.
- W2728006983 hasConceptScore W2728006983C149288129 @default.