Matches in SemOpenAlex for { <https://semopenalex.org/work/W2728926070> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2728926070 endingPage "5" @default.
- W2728926070 startingPage "5" @default.
- W2728926070 abstract "FROM K-NETS TO PK-NETS: A CATEGORICAL APPROACH ALEXANDRE POPOFF CARLOS AGON MORENO ANDREATTA ANDRÉE EHRESMANN 1. INTRODUCTION RANSFORMATIONAL APPROACHES have a long tradition in formalized music analysis in the American as well as in the European tradition. Since the publication of pioneering work by David Lewin (1987) and Guerino Mazzola (1990), this paradigm has become an autonomous field of study making use of more and more sophisticated mathematical tools, ranging from group theory to categorical methods via graphtheoretical constructions (Nolan 2007). Within the transformational approach, Klumpenhouwer networks (henceforth K-nets) are prototypical examples of music-theoretical constructions unifying the three domains we just mentioned, since they provide a description of the inner structure of chords by focusing on the transformations between their elements rather than on the elements themselves. For this reason, K-nets T 6 Perspectives of New Music represent a complementary approach to the traditional set-theoretical one with respect to the problem of chord enumeration and classification. One of the main interests for the “working mathemusician” lies in their deep connections with some common constructions used in category theory. In fact, following Mazzola’s original intuition on the relevance of the categorical approach to the formalization of musical structures and process, Klumpenhouwer networks seem suitable for music-theoretical investigations making use of category theory, since they are based on concepts (such as isographies) and principles (such as the recursive network construction) which are naturally grasped by the functorial approach. However, as we have suggested elsewhere (Popoff et al. 2015), although K-nets and, more generally, group action-based theoretical constructions, such as Lewin’s “Generalized Interval Systems ” (GIS), are naturally described in terms of categories and functors, the categorical approach to transformational theory remains relatively marginal with respect to the major trend in the math-music community (Mazzola 2002; Lavelle, unpublished paper; Fiore 2011; Popoff, submitted paper). Following Lewin’s (1990) and Klumpenhouwer’s (1991) original group-theoretical descriptions, theoretical studies have mostly focused until now on the automorphisms of the T/I group or of the more general T/M affine group (Lewin 1990; Klumpenhouwer 1998). This enables one to define the main notions of positive and negative isographies, notions which can easily be extended by taking into account the affine group on ℤ12, together with high-order isographies . Since a prominent feature of K-nets is their ability to instantiate an in-depth multi-level model of musical structure, category theory seems nowadays the most suitable mathematical framework to capture this recursive potentiality of the graph-theoretical construction (Mazzola et al. 2006) or to study creativity; e.g., in music (Andreatta et al. 2013). From a graph-theoretical perspective, a K-net is a directed graph (also called digraph) where the vertices (or nodes) consist of pitchclasses (or pitch-class sets) and the edges (or arrows) are elements of the T/I group (or, in a more general setting, of the T/M affine group). As an example, we represent two K-nets in Example 1. In addition, these K-nets are 〈T2〉-isographic, in the sense that every edge of the form Tp is sent to Tp and every edge of the form Ip is sent to Ip+2. In the general case, what music theorists call the “path consistency condition” (Hook 2007) is nothing else than the composition and associativity law of morphisms, together with the definition of functors in the categorical framework. Moreover, all K-nets correspond to commutative diagrams in category theory, where the term “diagram” is taken here in a naive sense (the technical concept of a diagram will be introduced in Section 5.1.) From K-Nets to PK-Nets: A Categorical Approach 7 Commutative diagrams, together with the notion of isography as an algebraic relation between K-nets which is independent of the content of the nodes, clearly suggest that the categorical approach is the natural one for the study of any kind of networks. Moreover, category theory shows how to go beyond the K-nets commonly used in transformational analysis by defining diagrams which do not necessarily have this property and by extending the isographic relation to different levels, by considering transformations between networks..." @default.
- W2728926070 created "2017-07-14" @default.
- W2728926070 creator A5018821682 @default.
- W2728926070 creator A5020625792 @default.
- W2728926070 creator A5024492164 @default.
- W2728926070 creator A5053856534 @default.
- W2728926070 date "2016-01-01" @default.
- W2728926070 modified "2023-10-14" @default.
- W2728926070 title "From K-Nets to PK-Nets: A Categorical Approach" @default.
- W2728926070 cites W2074319886 @default.
- W2728926070 cites W2104693689 @default.
- W2728926070 cites W2481767750 @default.
- W2728926070 cites W2936237084 @default.
- W2728926070 cites W2989336274 @default.
- W2728926070 cites W3121102632 @default.
- W2728926070 cites W3168164006 @default.
- W2728926070 cites W579365583 @default.
- W2728926070 cites W789241667 @default.
- W2728926070 doi "https://doi.org/10.7757/persnewmusi.54.2.0005" @default.
- W2728926070 hasPublicationYear "2016" @default.
- W2728926070 type Work @default.
- W2728926070 sameAs 2728926070 @default.
- W2728926070 citedByCount "5" @default.
- W2728926070 countsByYear W27289260702018 @default.
- W2728926070 countsByYear W27289260702020 @default.
- W2728926070 crossrefType "journal-article" @default.
- W2728926070 hasAuthorship W2728926070A5018821682 @default.
- W2728926070 hasAuthorship W2728926070A5020625792 @default.
- W2728926070 hasAuthorship W2728926070A5024492164 @default.
- W2728926070 hasAuthorship W2728926070A5053856534 @default.
- W2728926070 hasConcept C111472728 @default.
- W2728926070 hasConcept C119857082 @default.
- W2728926070 hasConcept C120314980 @default.
- W2728926070 hasConcept C132010649 @default.
- W2728926070 hasConcept C138885662 @default.
- W2728926070 hasConcept C142362112 @default.
- W2728926070 hasConcept C143857728 @default.
- W2728926070 hasConcept C153349607 @default.
- W2728926070 hasConcept C154945302 @default.
- W2728926070 hasConcept C194147245 @default.
- W2728926070 hasConcept C202444582 @default.
- W2728926070 hasConcept C33923547 @default.
- W2728926070 hasConcept C41008148 @default.
- W2728926070 hasConcept C5274069 @default.
- W2728926070 hasConcept C54884031 @default.
- W2728926070 hasConcept C558565934 @default.
- W2728926070 hasConcept C9652623 @default.
- W2728926070 hasConceptScore W2728926070C111472728 @default.
- W2728926070 hasConceptScore W2728926070C119857082 @default.
- W2728926070 hasConceptScore W2728926070C120314980 @default.
- W2728926070 hasConceptScore W2728926070C132010649 @default.
- W2728926070 hasConceptScore W2728926070C138885662 @default.
- W2728926070 hasConceptScore W2728926070C142362112 @default.
- W2728926070 hasConceptScore W2728926070C143857728 @default.
- W2728926070 hasConceptScore W2728926070C153349607 @default.
- W2728926070 hasConceptScore W2728926070C154945302 @default.
- W2728926070 hasConceptScore W2728926070C194147245 @default.
- W2728926070 hasConceptScore W2728926070C202444582 @default.
- W2728926070 hasConceptScore W2728926070C33923547 @default.
- W2728926070 hasConceptScore W2728926070C41008148 @default.
- W2728926070 hasConceptScore W2728926070C5274069 @default.
- W2728926070 hasConceptScore W2728926070C54884031 @default.
- W2728926070 hasConceptScore W2728926070C558565934 @default.
- W2728926070 hasConceptScore W2728926070C9652623 @default.
- W2728926070 hasIssue "2" @default.
- W2728926070 hasLocation W27289260701 @default.
- W2728926070 hasLocation W27289260702 @default.
- W2728926070 hasOpenAccess W2728926070 @default.
- W2728926070 hasPrimaryLocation W27289260701 @default.
- W2728926070 hasRelatedWork W1519819344 @default.
- W2728926070 hasRelatedWork W2093390952 @default.
- W2728926070 hasRelatedWork W2358163560 @default.
- W2728926070 hasRelatedWork W2360702444 @default.
- W2728926070 hasRelatedWork W2373148193 @default.
- W2728926070 hasRelatedWork W2377154840 @default.
- W2728926070 hasRelatedWork W2547963359 @default.
- W2728926070 hasRelatedWork W2728926070 @default.
- W2728926070 hasRelatedWork W4244250883 @default.
- W2728926070 hasRelatedWork W4280538915 @default.
- W2728926070 hasVolume "54" @default.
- W2728926070 isParatext "false" @default.
- W2728926070 isRetracted "false" @default.
- W2728926070 magId "2728926070" @default.
- W2728926070 workType "article" @default.