Matches in SemOpenAlex for { <https://semopenalex.org/work/W2729183986> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2729183986 abstract "The overaching goal in this thesis is to develop the representational frameworks, the inference algorithms, and the learning methods necessary for the accurate modeling of domains that exhibit complex and non-local dependency structures. There are three parts to this thesis. In the first part, we develop a toolbox of high order potentials (HOPs) that are useful for defining interactions and constraints that would be inefficient or otherwise difficult to use within the standard graphical modeling framework. For each potential, we develop associated algorithms so that the type of interaction can be used efficiently in a variety of settings. We further show that this HOP toolbox is useful not only for defining models, but also for defining loss functions.In the second part, we look at the similarities and differences between special-purpose and general-purpose inference algorithms, with the aim of learning from the special-purpose algorithms so that we can build better general-purpose algorithms. Specifically, we show how to cast a popular special-purpose algorithm (graph cuts) in terms of the degrees of freedom available to a popular general-purpose algorithm (max-product belief propagation). After, we look at how to take the lessons learned and build a better general-purpose algorithm.Finally, we develop a class of model that allows for the discrete optimization algorithms studied in the previous sections (as well as other discrete optimization algorithms) to be used as the centerpoint of probabilistic models. This allows us to build probabilistic models that have fast exact inference procedures in domains where the standard probabilistic formulation would lead to intractability." @default.
- W2729183986 created "2017-07-14" @default.
- W2729183986 creator A5081231468 @default.
- W2729183986 date "2013-01-01" @default.
- W2729183986 modified "2023-09-23" @default.
- W2729183986 title "Efficient machine learning with high order and combinatorial structures" @default.
- W2729183986 hasPublicationYear "2013" @default.
- W2729183986 type Work @default.
- W2729183986 sameAs 2729183986 @default.
- W2729183986 citedByCount "0" @default.
- W2729183986 crossrefType "dissertation" @default.
- W2729183986 hasAuthorship W2729183986A5081231468 @default.
- W2729183986 hasConcept C11413529 @default.
- W2729183986 hasConcept C119857082 @default.
- W2729183986 hasConcept C132525143 @default.
- W2729183986 hasConcept C136197465 @default.
- W2729183986 hasConcept C154945302 @default.
- W2729183986 hasConcept C155846161 @default.
- W2729183986 hasConcept C199360897 @default.
- W2729183986 hasConcept C2776214188 @default.
- W2729183986 hasConcept C2777655017 @default.
- W2729183986 hasConcept C41008148 @default.
- W2729183986 hasConcept C49937458 @default.
- W2729183986 hasConcept C80444323 @default.
- W2729183986 hasConceptScore W2729183986C11413529 @default.
- W2729183986 hasConceptScore W2729183986C119857082 @default.
- W2729183986 hasConceptScore W2729183986C132525143 @default.
- W2729183986 hasConceptScore W2729183986C136197465 @default.
- W2729183986 hasConceptScore W2729183986C154945302 @default.
- W2729183986 hasConceptScore W2729183986C155846161 @default.
- W2729183986 hasConceptScore W2729183986C199360897 @default.
- W2729183986 hasConceptScore W2729183986C2776214188 @default.
- W2729183986 hasConceptScore W2729183986C2777655017 @default.
- W2729183986 hasConceptScore W2729183986C41008148 @default.
- W2729183986 hasConceptScore W2729183986C49937458 @default.
- W2729183986 hasConceptScore W2729183986C80444323 @default.
- W2729183986 hasLocation W27291839861 @default.
- W2729183986 hasOpenAccess W2729183986 @default.
- W2729183986 hasPrimaryLocation W27291839861 @default.
- W2729183986 hasRelatedWork W1506934790 @default.
- W2729183986 hasRelatedWork W1509251869 @default.
- W2729183986 hasRelatedWork W1972454041 @default.
- W2729183986 hasRelatedWork W2008600685 @default.
- W2729183986 hasRelatedWork W2041872928 @default.
- W2729183986 hasRelatedWork W2059890614 @default.
- W2729183986 hasRelatedWork W206729627 @default.
- W2729183986 hasRelatedWork W2103890614 @default.
- W2729183986 hasRelatedWork W2243871733 @default.
- W2729183986 hasRelatedWork W2473453452 @default.
- W2729183986 hasRelatedWork W2478464795 @default.
- W2729183986 hasRelatedWork W2513258002 @default.
- W2729183986 hasRelatedWork W2519484726 @default.
- W2729183986 hasRelatedWork W2535143705 @default.
- W2729183986 hasRelatedWork W265533641 @default.
- W2729183986 hasRelatedWork W2884837949 @default.
- W2729183986 hasRelatedWork W2888363047 @default.
- W2729183986 hasRelatedWork W2953898811 @default.
- W2729183986 hasRelatedWork W2972713160 @default.
- W2729183986 hasRelatedWork W3097495674 @default.
- W2729183986 isParatext "false" @default.
- W2729183986 isRetracted "false" @default.
- W2729183986 magId "2729183986" @default.
- W2729183986 workType "dissertation" @default.