Matches in SemOpenAlex for { <https://semopenalex.org/work/W2729236181> ?p ?o ?g. }
- W2729236181 endingPage "962" @default.
- W2729236181 startingPage "950" @default.
- W2729236181 abstract "Abstract In the recent years, there have been increasingly tremendous demands for lightweight automotive parts, in the quest for better energy efficiency. These parts are produced using Ultra High Strength Steel (UHSS), for reasons of high strength and rigidity. However, for the parts blank to have increased strength and hardness, the forming process has to be carried out under elevated temperatures, achieved through preheating and quenching. In addition, to ensure an effective quenching, High Thermal Conductivity Steel (HTCS), having a high thermal conductivity and a high wear resistance, is used as the forming die, possibly resulting in impaired machinability. Therefore, an effective coolant-lubrication technique is required to ensure improved productivity. A cryogenic cooling technique, such as, the use of supercritical carbon dioxide (SCCO 2 ) was reviewed in the machining processes. SCCO 2 was selected over the more commonly used liquid nitrogen (LN 2 ), as the cryogenic substance, due to its low gas expansion value, thus ensuring lower environmental hazards to the workers. In short, the non-toxic SCCO 2 promotes a healthier, safer and more sustainable working environment. In this study, a milling process of HTCS was performed, where the effectiveness of SCCO 2 coolant was compared with that of Near Dry Machining and Dry Machining techniques, in terms of cutting temperature, cutting force, tool wear and wear mechanism. Two methods of SCCO 2 cooling conditions were analyzed, with and without lubricant. Both of the cooling conditions were applied under three different input chamber pressures. In comparison with Dry Machining, SCCO 2 with lubricant was found to have significantly improved the cutting force and cutting temperature, up to 60% and 55% respectively. In comparison with Dry Machining and Near Dry Machining, meanwhile, the cutting tool life increased to 150% and 87%, respectively. More importantly, it was observed that, adhesion, attrition and abrasion were the dominant wear mechanisms, when HTCS was milled under various coolant-lubricant conditions. The overall results revealed that, cryogenic cooling, using carbon dioxide gas under supercritical state, was the best option for a better control and improvement of tool wear. The prolonged tool life will ensure a highly sustainable production, with less tool wastage and more efficient machining process. From the environmental point of view, the use of SCCO 2 as a cryogenic substance is advantageous, as it fulfills the increasing demands for a cleaner manufacturing of HTCS." @default.
- W2729236181 created "2017-07-14" @default.
- W2729236181 creator A5021091785 @default.
- W2729236181 creator A5044132012 @default.
- W2729236181 creator A5058767311 @default.
- W2729236181 date "2017-10-01" @default.
- W2729236181 modified "2023-09-24" @default.
- W2729236181 title "The influence of cryogenic supercritical carbon dioxide cooling on tool wear during machining high thermal conductivity steel" @default.
- W2729236181 cites W1967682414 @default.
- W2729236181 cites W1977722266 @default.
- W2729236181 cites W1980723827 @default.
- W2729236181 cites W1986070682 @default.
- W2729236181 cites W1992504953 @default.
- W2729236181 cites W1992932194 @default.
- W2729236181 cites W1995180252 @default.
- W2729236181 cites W1995755484 @default.
- W2729236181 cites W2000110947 @default.
- W2729236181 cites W2001737047 @default.
- W2729236181 cites W2002210775 @default.
- W2729236181 cites W2003005823 @default.
- W2729236181 cites W2010053394 @default.
- W2729236181 cites W2012548672 @default.
- W2729236181 cites W2014741151 @default.
- W2729236181 cites W2017161091 @default.
- W2729236181 cites W2017516348 @default.
- W2729236181 cites W2020706855 @default.
- W2729236181 cites W2029875828 @default.
- W2729236181 cites W2031919382 @default.
- W2729236181 cites W2040335576 @default.
- W2729236181 cites W2041446870 @default.
- W2729236181 cites W2041872711 @default.
- W2729236181 cites W2046576682 @default.
- W2729236181 cites W2051894870 @default.
- W2729236181 cites W2059348200 @default.
- W2729236181 cites W2060777456 @default.
- W2729236181 cites W2061164305 @default.
- W2729236181 cites W2065991759 @default.
- W2729236181 cites W2067537085 @default.
- W2729236181 cites W2072328779 @default.
- W2729236181 cites W2075826929 @default.
- W2729236181 cites W2080471977 @default.
- W2729236181 cites W2087837296 @default.
- W2729236181 cites W2090631601 @default.
- W2729236181 cites W2142366846 @default.
- W2729236181 cites W2170720524 @default.
- W2729236181 cites W2170837590 @default.
- W2729236181 cites W2245870055 @default.
- W2729236181 cites W2461970796 @default.
- W2729236181 cites W2491373280 @default.
- W2729236181 cites W2524750200 @default.
- W2729236181 cites W2580527134 @default.
- W2729236181 doi "https://doi.org/10.1016/j.jclepro.2017.07.019" @default.
- W2729236181 hasPublicationYear "2017" @default.
- W2729236181 type Work @default.
- W2729236181 sameAs 2729236181 @default.
- W2729236181 citedByCount "51" @default.
- W2729236181 countsByYear W27292361812017 @default.
- W2729236181 countsByYear W27292361812018 @default.
- W2729236181 countsByYear W27292361812019 @default.
- W2729236181 countsByYear W27292361812020 @default.
- W2729236181 countsByYear W27292361812021 @default.
- W2729236181 countsByYear W27292361812022 @default.
- W2729236181 countsByYear W27292361812023 @default.
- W2729236181 crossrefType "journal-article" @default.
- W2729236181 hasAuthorship W2729236181A5021091785 @default.
- W2729236181 hasAuthorship W2729236181A5044132012 @default.
- W2729236181 hasAuthorship W2729236181A5058767311 @default.
- W2729236181 hasConcept C118419359 @default.
- W2729236181 hasConcept C121332964 @default.
- W2729236181 hasConcept C134458231 @default.
- W2729236181 hasConcept C159985019 @default.
- W2729236181 hasConcept C178790620 @default.
- W2729236181 hasConcept C185592680 @default.
- W2729236181 hasConcept C191897082 @default.
- W2729236181 hasConcept C192562407 @default.
- W2729236181 hasConcept C204530211 @default.
- W2729236181 hasConcept C523214423 @default.
- W2729236181 hasConcept C530467964 @default.
- W2729236181 hasConcept C97346530 @default.
- W2729236181 hasConcept C97355855 @default.
- W2729236181 hasConceptScore W2729236181C118419359 @default.
- W2729236181 hasConceptScore W2729236181C121332964 @default.
- W2729236181 hasConceptScore W2729236181C134458231 @default.
- W2729236181 hasConceptScore W2729236181C159985019 @default.
- W2729236181 hasConceptScore W2729236181C178790620 @default.
- W2729236181 hasConceptScore W2729236181C185592680 @default.
- W2729236181 hasConceptScore W2729236181C191897082 @default.
- W2729236181 hasConceptScore W2729236181C192562407 @default.
- W2729236181 hasConceptScore W2729236181C204530211 @default.
- W2729236181 hasConceptScore W2729236181C523214423 @default.
- W2729236181 hasConceptScore W2729236181C530467964 @default.
- W2729236181 hasConceptScore W2729236181C97346530 @default.
- W2729236181 hasConceptScore W2729236181C97355855 @default.
- W2729236181 hasFunder F4320310112 @default.
- W2729236181 hasFunder F4320321709 @default.
- W2729236181 hasLocation W27292361811 @default.
- W2729236181 hasOpenAccess W2729236181 @default.
- W2729236181 hasPrimaryLocation W27292361811 @default.