Matches in SemOpenAlex for { <https://semopenalex.org/work/W2730037105> ?p ?o ?g. }
- W2730037105 endingPage "19286" @default.
- W2730037105 startingPage "19272" @default.
- W2730037105 abstract "In this paper we report on an experimental study conducted on the thermo-electrical performance of a small-scale (i.e. 2.4 kW) Proton Exchange Membrane Fuel Cell (PEMFC), in which both conventional 50/50 water-Ethylene Glycol (EG), and 50/50 water-EG based ZnO nanofluids were used as coolants. PEMFCs are a promising alternative to Internal Combustion Engines (ICEs) for automotive applications. However, among other challenges, the large-sized cooling system of PEMFCs (i.e. the radiator) imposes a great challenge for this application. Using nanofluids as coolants has the potential to address this challenge. Employing selected nanofluids as coolants, with maximum 0.5 vol% nanoparticle concentration, showed no change in the electrical power outputs of the stack based on its polarisation curve, whereas the cooling capacity of the system was improved 29% compared with that while using 50/50 water-EG as coolant. The experimental investigation reported here confirmed the earlier theoretical finding that the frontal area of the radiator (i.e. used for fuel cell cooling) could be reduced by about 27% when nanofluids (0.5 vol%) replaced conventional EG/water coolants. Using 0.5 vol% ZnO nanofluid also showed just less than 10% increase in the pumping power compared to when the conventional 50/50 water-EG was used as coolant. It is concluded in this study that up to 0.5 vol% ZnO nanofluid can be applied to the PEMFC cooling system without affecting any electrical performance of the system." @default.
- W2730037105 created "2017-07-14" @default.
- W2730037105 creator A5049508796 @default.
- W2730037105 creator A5055244412 @default.
- W2730037105 creator A5078872145 @default.
- W2730037105 creator A5080087571 @default.
- W2730037105 date "2017-07-01" @default.
- W2730037105 modified "2023-09-30" @default.
- W2730037105 title "Experimental investigation of using ZnO nanofluids as coolants in a PEM fuel cell" @default.
- W2730037105 cites W1177743774 @default.
- W2730037105 cites W1795761821 @default.
- W2730037105 cites W1971369842 @default.
- W2730037105 cites W1973050719 @default.
- W2730037105 cites W1981442388 @default.
- W2730037105 cites W1983312428 @default.
- W2730037105 cites W1995710956 @default.
- W2730037105 cites W2000515735 @default.
- W2730037105 cites W2007404926 @default.
- W2730037105 cites W2010364254 @default.
- W2730037105 cites W2011339767 @default.
- W2730037105 cites W2012175589 @default.
- W2730037105 cites W2016281616 @default.
- W2730037105 cites W2017641610 @default.
- W2730037105 cites W2025211444 @default.
- W2730037105 cites W2028531223 @default.
- W2730037105 cites W2034685966 @default.
- W2730037105 cites W2035638666 @default.
- W2730037105 cites W2046018606 @default.
- W2730037105 cites W2047718404 @default.
- W2730037105 cites W2051505754 @default.
- W2730037105 cites W2051623369 @default.
- W2730037105 cites W2052398528 @default.
- W2730037105 cites W2057258330 @default.
- W2730037105 cites W2061049636 @default.
- W2730037105 cites W2086307731 @default.
- W2730037105 cites W2087423211 @default.
- W2730037105 cites W2090022833 @default.
- W2730037105 cites W2091336373 @default.
- W2730037105 cites W2091510894 @default.
- W2730037105 cites W2091742990 @default.
- W2730037105 cites W2092763208 @default.
- W2730037105 cites W2093603205 @default.
- W2730037105 cites W2099389381 @default.
- W2730037105 cites W2109113734 @default.
- W2730037105 cites W2125160018 @default.
- W2730037105 cites W2164857248 @default.
- W2730037105 cites W2181896691 @default.
- W2730037105 cites W2184181237 @default.
- W2730037105 cites W2190143774 @default.
- W2730037105 cites W2236682323 @default.
- W2730037105 cites W2280486156 @default.
- W2730037105 cites W2282190727 @default.
- W2730037105 cites W2289864921 @default.
- W2730037105 cites W2305907337 @default.
- W2730037105 cites W2309632559 @default.
- W2730037105 cites W2310254197 @default.
- W2730037105 cites W2312531053 @default.
- W2730037105 cites W2318715068 @default.
- W2730037105 cites W2341473176 @default.
- W2730037105 cites W2344431227 @default.
- W2730037105 cites W2351606145 @default.
- W2730037105 cites W2361710923 @default.
- W2730037105 cites W2413463720 @default.
- W2730037105 cites W2426603044 @default.
- W2730037105 cites W2426626085 @default.
- W2730037105 cites W2430204809 @default.
- W2730037105 cites W2462594433 @default.
- W2730037105 cites W2462737767 @default.
- W2730037105 cites W2463722560 @default.
- W2730037105 cites W2465892767 @default.
- W2730037105 cites W2507661243 @default.
- W2730037105 cites W2521729672 @default.
- W2730037105 cites W2525311787 @default.
- W2730037105 cites W2533700650 @default.
- W2730037105 cites W2607052902 @default.
- W2730037105 cites W265902209 @default.
- W2730037105 cites W2947183082 @default.
- W2730037105 doi "https://doi.org/10.1016/j.ijhydene.2017.06.087" @default.
- W2730037105 hasPublicationYear "2017" @default.
- W2730037105 type Work @default.
- W2730037105 sameAs 2730037105 @default.
- W2730037105 citedByCount "60" @default.
- W2730037105 countsByYear W27300371052018 @default.
- W2730037105 countsByYear W27300371052019 @default.
- W2730037105 countsByYear W27300371052020 @default.
- W2730037105 countsByYear W27300371052021 @default.
- W2730037105 countsByYear W27300371052022 @default.
- W2730037105 countsByYear W27300371052023 @default.
- W2730037105 crossrefType "journal-article" @default.
- W2730037105 hasAuthorship W2730037105A5049508796 @default.
- W2730037105 hasAuthorship W2730037105A5055244412 @default.
- W2730037105 hasAuthorship W2730037105A5078872145 @default.
- W2730037105 hasAuthorship W2730037105A5080087571 @default.
- W2730037105 hasConcept C116915560 @default.
- W2730037105 hasConcept C121332964 @default.
- W2730037105 hasConcept C127413603 @default.
- W2730037105 hasConcept C132319479 @default.
- W2730037105 hasConcept C155672457 @default.