Matches in SemOpenAlex for { <https://semopenalex.org/work/W2730461382> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2730461382 endingPage "121" @default.
- W2730461382 startingPage "107" @default.
- W2730461382 abstract "An accurate foot traffic prediction system can help retail businesses, physical stores, and restaurants optimize their labor schedule and costs, and reduce food wastage. In this paper, we design a large scale data collection and prediction system for store foot traffic. Our data has been collected from wireless access points deployed at over 100 businesses across the United States for a period of more than one year. This data is centrally processed and analyzed to predict the foot traffic for the next 168 hours (a week). Our current predictor is based on Support Vector Regression (SVR). There are a few other predictors that we have found that are similar in accuracy to SVR. For our collected data the average foot traffic per hour is 35 per store. Our prediction result is on average within 22% of the actual result for a 168 hour (a week) period." @default.
- W2730461382 created "2017-07-14" @default.
- W2730461382 creator A5027433743 @default.
- W2730461382 creator A5062768578 @default.
- W2730461382 creator A5078570574 @default.
- W2730461382 date "2017-01-01" @default.
- W2730461382 modified "2023-09-27" @default.
- W2730461382 title "Smart Stores: A Scalable Foot Traffic Collection and Prediction System" @default.
- W2730461382 cites W1599300385 @default.
- W2730461382 cites W1999669134 @default.
- W2730461382 cites W2012705675 @default.
- W2730461382 cites W2016210396 @default.
- W2730461382 cites W2017337226 @default.
- W2730461382 cites W2034478253 @default.
- W2730461382 cites W2094515728 @default.
- W2730461382 cites W2095875205 @default.
- W2730461382 cites W2119821739 @default.
- W2730461382 cites W2477834368 @default.
- W2730461382 cites W2497335829 @default.
- W2730461382 cites W2525601249 @default.
- W2730461382 cites W2911964244 @default.
- W2730461382 doi "https://doi.org/10.1007/978-3-319-62701-4_9" @default.
- W2730461382 hasPublicationYear "2017" @default.
- W2730461382 type Work @default.
- W2730461382 sameAs 2730461382 @default.
- W2730461382 citedByCount "5" @default.
- W2730461382 countsByYear W27304613822018 @default.
- W2730461382 countsByYear W27304613822021 @default.
- W2730461382 countsByYear W27304613822022 @default.
- W2730461382 countsByYear W27304613822023 @default.
- W2730461382 crossrefType "book-chapter" @default.
- W2730461382 hasAuthorship W2730461382A5027433743 @default.
- W2730461382 hasAuthorship W2730461382A5062768578 @default.
- W2730461382 hasAuthorship W2730461382A5078570574 @default.
- W2730461382 hasConcept C41008148 @default.
- W2730461382 hasConcept C48044578 @default.
- W2730461382 hasConcept C77088390 @default.
- W2730461382 hasConcept C79403827 @default.
- W2730461382 hasConceptScore W2730461382C41008148 @default.
- W2730461382 hasConceptScore W2730461382C48044578 @default.
- W2730461382 hasConceptScore W2730461382C77088390 @default.
- W2730461382 hasConceptScore W2730461382C79403827 @default.
- W2730461382 hasLocation W27304613821 @default.
- W2730461382 hasOpenAccess W2730461382 @default.
- W2730461382 hasPrimaryLocation W27304613821 @default.
- W2730461382 hasRelatedWork W1496367644 @default.
- W2730461382 hasRelatedWork W1525643724 @default.
- W2730461382 hasRelatedWork W1527726406 @default.
- W2730461382 hasRelatedWork W1597381735 @default.
- W2730461382 hasRelatedWork W1976363619 @default.
- W2730461382 hasRelatedWork W2302028273 @default.
- W2730461382 hasRelatedWork W2364921833 @default.
- W2730461382 hasRelatedWork W2382623646 @default.
- W2730461382 hasRelatedWork W2388030554 @default.
- W2730461382 hasRelatedWork W3087771547 @default.
- W2730461382 isParatext "false" @default.
- W2730461382 isRetracted "false" @default.
- W2730461382 magId "2730461382" @default.
- W2730461382 workType "book-chapter" @default.