Matches in SemOpenAlex for { <https://semopenalex.org/work/W2730768504> ?p ?o ?g. }
- W2730768504 endingPage "40" @default.
- W2730768504 startingPage "28" @default.
- W2730768504 abstract "We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which provides the advective component of transport, is obtained through the numerical solution of Darcy's law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are respectively grounded on the definition of the guiding error estimator through the spatial gradients of: (i) the concentration field only; (ii) both concentration and velocity components. We test the approach for two-dimensional computational scenarios with moderate and high levels of heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference against which we test our results, we consider corresponding solutions associated with uniform space-time grids whose level of refinement is established through a detailed convergence study. We find a satisfactory comparison between results for the adaptive methodologies and such reference solutions, our adaptive technique being associated with a markedly reduced computational cost. Comparison of the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on concentration fields yields some advantages in grasping the key features of solute transport taking place within low velocity regions, where diffusion-dispersion mechanisms are dominant; and (ii) embedding the velocity field in the error estimator guiding strategy yields an improved characterization of the forward fringe of solute fronts which propagate through high velocity regions." @default.
- W2730768504 created "2017-07-14" @default.
- W2730768504 creator A5020918068 @default.
- W2730768504 creator A5032910401 @default.
- W2730768504 creator A5041024196 @default.
- W2730768504 creator A5043309612 @default.
- W2730768504 date "2018-05-01" @default.
- W2730768504 modified "2023-10-14" @default.
- W2730768504 title "Space-time mesh adaptation for solute transport in randomly heterogeneous porous media" @default.
- W2730768504 cites W1482505570 @default.
- W2730768504 cites W1632977450 @default.
- W2730768504 cites W1642052582 @default.
- W2730768504 cites W1671897292 @default.
- W2730768504 cites W1847772679 @default.
- W2730768504 cites W1928574816 @default.
- W2730768504 cites W1934872087 @default.
- W2730768504 cites W1964561734 @default.
- W2730768504 cites W1970151228 @default.
- W2730768504 cites W1977425969 @default.
- W2730768504 cites W1979518155 @default.
- W2730768504 cites W1994897398 @default.
- W2730768504 cites W2012148276 @default.
- W2730768504 cites W2018877052 @default.
- W2730768504 cites W2021188557 @default.
- W2730768504 cites W2043922553 @default.
- W2730768504 cites W2044544310 @default.
- W2730768504 cites W2057589327 @default.
- W2730768504 cites W2069426867 @default.
- W2730768504 cites W2070257053 @default.
- W2730768504 cites W2070960347 @default.
- W2730768504 cites W2085316289 @default.
- W2730768504 cites W2091669909 @default.
- W2730768504 cites W2093568336 @default.
- W2730768504 cites W2096359889 @default.
- W2730768504 cites W2096890836 @default.
- W2730768504 cites W2110653873 @default.
- W2730768504 cites W2115181020 @default.
- W2730768504 cites W2117940093 @default.
- W2730768504 cites W2124101064 @default.
- W2730768504 cites W2148716879 @default.
- W2730768504 cites W2155395549 @default.
- W2730768504 cites W2157307087 @default.
- W2730768504 cites W2162673614 @default.
- W2730768504 cites W2263617332 @default.
- W2730768504 cites W2297932795 @default.
- W2730768504 cites W2335624958 @default.
- W2730768504 cites W4252011536 @default.
- W2730768504 doi "https://doi.org/10.1016/j.jconhyd.2017.07.001" @default.
- W2730768504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28789868" @default.
- W2730768504 hasPublicationYear "2018" @default.
- W2730768504 type Work @default.
- W2730768504 sameAs 2730768504 @default.
- W2730768504 citedByCount "3" @default.
- W2730768504 countsByYear W27307685042020 @default.
- W2730768504 countsByYear W27307685042021 @default.
- W2730768504 countsByYear W27307685042023 @default.
- W2730768504 crossrefType "journal-article" @default.
- W2730768504 hasAuthorship W2730768504A5020918068 @default.
- W2730768504 hasAuthorship W2730768504A5032910401 @default.
- W2730768504 hasAuthorship W2730768504A5041024196 @default.
- W2730768504 hasAuthorship W2730768504A5043309612 @default.
- W2730768504 hasBestOaLocation W27307685042 @default.
- W2730768504 hasConcept C105569014 @default.
- W2730768504 hasConcept C105795698 @default.
- W2730768504 hasConcept C121332964 @default.
- W2730768504 hasConcept C126255220 @default.
- W2730768504 hasConcept C127313418 @default.
- W2730768504 hasConcept C134306372 @default.
- W2730768504 hasConcept C17456955 @default.
- W2730768504 hasConcept C185429906 @default.
- W2730768504 hasConcept C187320778 @default.
- W2730768504 hasConcept C2524010 @default.
- W2730768504 hasConcept C28826006 @default.
- W2730768504 hasConcept C33923547 @default.
- W2730768504 hasConcept C39927690 @default.
- W2730768504 hasConcept C41008148 @default.
- W2730768504 hasConcept C5072599 @default.
- W2730768504 hasConcept C57691317 @default.
- W2730768504 hasConcept C6648577 @default.
- W2730768504 hasConcept C73000952 @default.
- W2730768504 hasConcept C91188154 @default.
- W2730768504 hasConcept C97355855 @default.
- W2730768504 hasConcept C99844830 @default.
- W2730768504 hasConceptScore W2730768504C105569014 @default.
- W2730768504 hasConceptScore W2730768504C105795698 @default.
- W2730768504 hasConceptScore W2730768504C121332964 @default.
- W2730768504 hasConceptScore W2730768504C126255220 @default.
- W2730768504 hasConceptScore W2730768504C127313418 @default.
- W2730768504 hasConceptScore W2730768504C134306372 @default.
- W2730768504 hasConceptScore W2730768504C17456955 @default.
- W2730768504 hasConceptScore W2730768504C185429906 @default.
- W2730768504 hasConceptScore W2730768504C187320778 @default.
- W2730768504 hasConceptScore W2730768504C2524010 @default.
- W2730768504 hasConceptScore W2730768504C28826006 @default.
- W2730768504 hasConceptScore W2730768504C33923547 @default.
- W2730768504 hasConceptScore W2730768504C39927690 @default.
- W2730768504 hasConceptScore W2730768504C41008148 @default.
- W2730768504 hasConceptScore W2730768504C5072599 @default.