Matches in SemOpenAlex for { <https://semopenalex.org/work/W2730810975> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2730810975 endingPage "211" @default.
- W2730810975 startingPage "205" @default.
- W2730810975 abstract "In this paper we describe a hierarchical method for procedurally generating 2D game maps using multi-dimensional Markov chains (MdMCs). Our method takes a collection of 2D game maps, breaks them into small chunks and performs clustering to find a set of chunks that correspond to high-level structures (high-level tiles) in the training maps. This set of high-level tiles is then used to re-represent the training maps, and to fit two sets of MdMC models: a high-level model captures the distribution of high-level tiles in the map, and a set of low-level models capture the internal structure of each high-level tile. These two sets of models can then be used to hierarchically generate new maps. We test our approach using two classic games, Super Mario Bros. and Loderunner, and compare the results against other existing map generators." @default.
- W2730810975 created "2017-07-14" @default.
- W2730810975 creator A5013968002 @default.
- W2730810975 creator A5038686010 @default.
- W2730810975 date "2021-06-24" @default.
- W2730810975 modified "2023-10-06" @default.
- W2730810975 title "A Hierarchical MdMC Approach to 2D Video Game Map Generation" @default.
- W2730810975 cites W2001923012 @default.
- W2730810975 cites W2031734221 @default.
- W2730810975 cites W2035033474 @default.
- W2730810975 cites W2041404167 @default.
- W2730810975 cites W2063569379 @default.
- W2730810975 cites W2086661052 @default.
- W2730810975 cites W2103823214 @default.
- W2730810975 cites W2152660354 @default.
- W2730810975 cites W2168115594 @default.
- W2730810975 cites W2197211417 @default.
- W2730810975 cites W2212764182 @default.
- W2730810975 cites W2577482072 @default.
- W2730810975 cites W87092222 @default.
- W2730810975 doi "https://doi.org/10.1609/aiide.v11i1.12794" @default.
- W2730810975 hasPublicationYear "2021" @default.
- W2730810975 type Work @default.
- W2730810975 sameAs 2730810975 @default.
- W2730810975 citedByCount "14" @default.
- W2730810975 countsByYear W27308109752016 @default.
- W2730810975 countsByYear W27308109752017 @default.
- W2730810975 countsByYear W27308109752018 @default.
- W2730810975 countsByYear W27308109752020 @default.
- W2730810975 countsByYear W27308109752021 @default.
- W2730810975 countsByYear W27308109752023 @default.
- W2730810975 crossrefType "journal-article" @default.
- W2730810975 hasAuthorship W2730810975A5013968002 @default.
- W2730810975 hasAuthorship W2730810975A5038686010 @default.
- W2730810975 hasBestOaLocation W27308109751 @default.
- W2730810975 hasConcept C119857082 @default.
- W2730810975 hasConcept C154945302 @default.
- W2730810975 hasConcept C166957645 @default.
- W2730810975 hasConcept C177264268 @default.
- W2730810975 hasConcept C199360897 @default.
- W2730810975 hasConcept C205649164 @default.
- W2730810975 hasConcept C2780728851 @default.
- W2730810975 hasConcept C3018412434 @default.
- W2730810975 hasConcept C41008148 @default.
- W2730810975 hasConcept C49774154 @default.
- W2730810975 hasConcept C73555534 @default.
- W2730810975 hasConcept C92835128 @default.
- W2730810975 hasConcept C98763669 @default.
- W2730810975 hasConceptScore W2730810975C119857082 @default.
- W2730810975 hasConceptScore W2730810975C154945302 @default.
- W2730810975 hasConceptScore W2730810975C166957645 @default.
- W2730810975 hasConceptScore W2730810975C177264268 @default.
- W2730810975 hasConceptScore W2730810975C199360897 @default.
- W2730810975 hasConceptScore W2730810975C205649164 @default.
- W2730810975 hasConceptScore W2730810975C2780728851 @default.
- W2730810975 hasConceptScore W2730810975C3018412434 @default.
- W2730810975 hasConceptScore W2730810975C41008148 @default.
- W2730810975 hasConceptScore W2730810975C49774154 @default.
- W2730810975 hasConceptScore W2730810975C73555534 @default.
- W2730810975 hasConceptScore W2730810975C92835128 @default.
- W2730810975 hasConceptScore W2730810975C98763669 @default.
- W2730810975 hasIssue "1" @default.
- W2730810975 hasLocation W27308109751 @default.
- W2730810975 hasOpenAccess W2730810975 @default.
- W2730810975 hasPrimaryLocation W27308109751 @default.
- W2730810975 hasRelatedWork W1999627569 @default.
- W2730810975 hasRelatedWork W2011751402 @default.
- W2730810975 hasRelatedWork W204573480 @default.
- W2730810975 hasRelatedWork W2370909876 @default.
- W2730810975 hasRelatedWork W2389529561 @default.
- W2730810975 hasRelatedWork W2592952084 @default.
- W2730810975 hasRelatedWork W2730810975 @default.
- W2730810975 hasRelatedWork W3150079570 @default.
- W2730810975 hasRelatedWork W4306887032 @default.
- W2730810975 hasRelatedWork W763609066 @default.
- W2730810975 hasVolume "11" @default.
- W2730810975 isParatext "false" @default.
- W2730810975 isRetracted "false" @default.
- W2730810975 magId "2730810975" @default.
- W2730810975 workType "article" @default.